37
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Polymer Crystallization Kinetics and Thermodynamics of Some Industrial Polyamides

Received 23 Mar 2024, Accepted 30 Apr 2024, Published online: 09 May 2024

References

  • Pattabiraman, V. R.; Bode, J. W. Rethinking Amide Bond Synthesis. Nature. 2011, 480, 471–479. DOI: 10.1038/nature10702.
  • Gazit, E. Reductionist Approach in Peptide-Based Nanotechnology. Annu. Rev. Biochem. 2018, 87, 533–553. DOI: 10.1146/annurev-biochem-062917-012541.
  • Marchildon, K. Polyamides – Still Strong after Seventy Years. Macro. React. Eng. 2011, 5, 22–54. DOI: 10.1002/mren.201000017.
  • Winnacker, M.; Rieger, B. Biobased Polyamides: Recent Advances in Basic and Applied Research. Macromol. Rapid Commun. 2016, 37, 1391–1413. DOI: 10.1002/marc.201600181.
  • Yang, H.; Wentao, L. Bio-Based Polyamide 56: Recent Advances in Basic and Applied Research. Poly. Eng. Sci. 2023, 63, 2484–2497. DOI: 10.1002/pen.26390.
  • Shakiba, M.; Ghomi, E. R.; Khosravi, F.; Jouybar, S.; Bigham, A.; Zare, M.; Abdouss, M.; Moaref, R.; Ramakrishna, S. Nylon – A Material Introduction and Overview for Biomedical Applications. Polym. Adv. Techs. 2021, 32, 3368–3383. DOI: 10.1002/pat.5372.
  • Patel, R.; Ruehle, D. A.; Dorgan, J. R.; Halley, P.; Martin, D. Biorenewable Blends of Polyamide-11 and Polylactide. Poly. Eng. Sci. 2014, 54, 1523–1532. DOI: 10.1002/pen.23692.
  • Jariyavidyanont, K.; Williams, J. L.; Rhoades, A. M.; Kühnert, I.; Focke, W.; Androsch, R. Crystallization of Polyamide 11 during Injection Molding. Poly. Eng. Sci. 2018, 58, 1053–1061. DOI: 10.1002/pen.24665.
  • Levchik, S. V.; Weil, E. D.; Lewin, M. Thermal Decomposition of Aliphatic Nylons. Polym. Int. 1999, 48, 532–557. DOI: 10.1002/(sici)1097-0126(199907)48:7 < 532::aid-pi214 > 3.0.co;2-r.
  • Varghese, M.; Grinstaff, M. W. Beyond Nylon 6: Polyamides via Ring Opening Polymerization of Designer Lactam Monomers for Biomedical Applications. Chem. Soc. Rev. 2022, 51, 8258–8275. DOI: 10.1039/d1cs00930c.
  • Faridirad, F.; Ahmadi, S.; Barmar, M. Polyamide/Carbon Nanoparticles Nanocomposites: A Review. Polym. Eng. Sci. 2017, 57, 475–494. DOI: 10.1002/pen.24444.
  • Francisco, D. L.; Paiva, L. B.; Aldeia, W. Advances in Polyamide Nanocomposites: A Review. Polym. Compos. 2019, 40, 851–870. DOI: 10.1002/pc.24837.
  • Jayaramulu, K.; Mukherjee, S.; Morales, D. M.; Dubal, D. P.; Nanjundan, A. K.; Schneemann, A.; Masa, J.; Kment, S.; Schuhmann, W.; Otyepka, M.; et al. Graphene-Based Metal–Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies. Chem. Rev. 2022, 122, 17241–17338. DOI: 10.1021/acs.chemrev.2c00270.
  • Arshad, M. A. A Novel Kinetic Approach to Crystallization Mechanisms in Polymers. Poly. Eng. Sci. 2021, 61, 1502–1517. DOI: 10.1002/pen.25670.
  • Arshad, M. A. Kinetics of Crystallization Mechanisms in Poly(3-Hexylthiophene) and Poly(9,9-Dihexylfluorene-Alt-2,5-Didodecyloxybenzene) Conjugated Polymers. J. Mol. Struct. 2023, 1273, 134270. DOI: 10.1016/j.molstruc.2022.134270.
  • Rahimi, S. K.; Otaigbe, J. U. The Role of Particle Surface Functionality and Microstructure Development in Isothermal and Non-Isothermal Crystallization Behavior of Polyamide 6/Cellulose Nanocrystals Nanocomposites. Poly. 2016, 107, 316–331. DOI: 10.1016/j.polymer.2016.11.023.
  • Zhang, X.; Buzinkai, J.; Quinn, E.; Rhoades, A. Key Insights into the Differences between Bimodal Crystallization Kinetics of Polyamide 66 and Polyamide 6. Macromol. 2022, 55, 9220–9231. DOI: 10.1021/acs.macromol.2c01059.
  • Rwei, S.-P.; Tseng, Y.-C.; Chiu, K.-C.; Chang, S.-M.; Chen, Y.-M. The Crystallization Kinetics of Nylon 6/6T and Nylon 66/6T Copolymers. Thermochim. Acta. 2013, 555, 37–45. DOI: 10.1016/j.tca.2012.12.026.
  • Tseng, C.-H.; Tsai, P.-S. The Isothermal and Nonisothermal Crystallization Kinetics and Morphology of Solvent-Precipitated Nylon 66. Polymers. 2022, 14, 442. DOI: 10.3390/polym14030442.
  • Wang, Y.; Kang, H.-L.; Wang, R.; Liu, R.-G.; Hao, X.-M. Crystallization of Polyamide 56/Polyamide 66 Blends: Non-Isothermal Crystallization Kinetics. J. Appl. Poly. Sci. 2018, 135, 46409. DOI: 10.1002/app.46409.
  • Jape, S. P.; Deshpande, V. D. Nonisothermal Crystallization Kinetics of Nylon 66/LCP Blends. Thermochim. Acta. 2017, 655, 1–12. DOI: 10.1016/j.tca.2017.06.007.
  • Layachi, A.; Frihi, D.; Satha, H.; Seguela, R.; Gherib, S. Non-Isothermal Crystallization Kinetics of Polyamide 66/Glass Fibers/Carbon Black Composites. J. Therm. Anal. Calorim. 2016, 124, 1319–1329. DOI: 10.1007/s10973-016-5286-0.
  • Ma, Y.-L.; Hu, G.-S.; Ren, X.-L.; Wang, B.-B. Non-Isothermal Crystallization Kinetics and Melting Behaviors of Nylon 11/Tetrapod-Shaped ZnO Whisker (T-ZnOw) Composites. Mater. Sci. Eng. A. 2007, 460–461, 611–618. DOI: 10.1016/j.msea.2007.01.133.
  • Liu, S.; Yu, Y.; Cui, Y.; Zhang, H.; Mo, Z. Isothermal and Nonisothermal Crystallization Kinetics of Nylon-11. J. Appl. Polym. Sci. 1998, 70, 2371–2380. DOI: 10.1002/(sici)1097-4628(19981219)70:12 < 2371::aid-app9 > 3.0.co;2-4.
  • Teo, H. W. B.; Chen, K.; Tran, V. T.; Du, H.; Zeng, J.; Zhou, K. Non-Isothermal Crystallization Behaviour of Polyamide 12 Analogous to Multi-Jet Fusion Additive Manufacturing Process. Polym. 2021, 235, 124256. DOI: 10.1016/j.polymer.2021.124256.
  • McFerran, N. L. A.; Armstrong, C. G.; McNally, T. Nonisothermal and Isothermal Crystallization Kinetics of Nylon-12. J. Appl. Poly. Sci. 2008, 110, 1043–1058. DOI: 10.1002/app.28696.
  • Vyazovkin, S.; Sbirrazzuoli, N. Nonisothermal Crystallization Kinetics by DSC: Practical Overview. Processes. 2023, 11, 1438. DOI: 10.3390/pr11051438.
  • Vyazovkin, S. Nonisothermal Crystallization of Polymers: Getting More out of Kinetic Analysis of Differential Scanning Calorimetry Data. Poly. Crystall. 2018, 1, e10003. DOI: 10.3390/pr11051438.
  • Hoffman, J. D.; Weeks, J. J.; Murphey, W. M. Experimental and Theoretical Study of Kinetics of Bulk Crystallization in Poly(Chlorotrifluroethylene. J. Res. Natl. Bur. Stand. A Phys. Chem. 1959, 63A, 67–98. DOI: 10.6028/jres.063a.005.
  • Hoffman, J. D.; Davis, G. T.; Lauritzen, J. I. Jr. The Rate of Crystallization of Linear Polymers with Chain Folding in Treatise on Solid State Chemistry, Hannay, N. B., Ed; Plenum Press, New York, 1976, vol. 3, p. 497.
  • Arshad, M. A. Kinetics of Crystallization Mechanisms in High Density Polyethylene and Isotactic Polypropylene. Polym. Sci., Ser. A. 2021, 63, S23–S33. DOI: 10.1134/s0965545x22030014.
  • Arshad, M. A. Non-Isothermal Glass and Melt Crystallization of Poly(3-Hydroxybutyrate) Biopolymer: Kinetics and Mechanisms. J. Macromol. Sci. Part B, Phys. 2023, 62, 399–416. DOI: 10.1080/00222348.2023.2218230.
  • Vyazovkin, S. Activation Energies and Temperature Dependencies of the Rates of Crystallization and Melting of Polymers. Polymers. 2020, 12, 1070–1092. DOI: 10.3390/polym12051070.
  • Arshad, M. A.; Maaroufi, A. An Innovative Reaction Model Determination Methodology in Solid State Kinetics Based on Variable Activation Energy. Thermochim. Acta. 2014, 585, 25–35. DOI: 10.1016/j.tca.2014.03.025.
  • Vyazovkin, S.; Chrissafis, K.; Lorenzo, M. L. D.; Koga, N.; Pijolat, M.; Roduit, B.; Sbirrazzuoli, N.; Suñol, J. J. ICTAC Kinetics Committee Recommendations for Collecting Experimental Thermal Analysis Data for Kinetic Computations. Thermochim. Acta. 2014, 590, 1–23. DOI: 10.1016/j.tca.2014.05.036.
  • Rohatgi, A. WebPlotDigitizer, https://automeris.io/WebPlotDigitizer/ last retrieved, Apr 29, 2024.
  • Luo, J.; Ying, K.; Bai, J. Savitzky–Golay Smoothing and Differentiation Filter for Even Number Data. Sig. Pro. 2005, 85, 1429–1434. DOI: 10.1016/j.sigpro.2005.02.002.
  • Greco, R.; Nicolais, L. Glass Transition Temperature in Nylons. Polymer. 1976, 17, 1049–1053. DOI: 10.1016/0032-3861(76)90005-7.
  • El-Taweel, S. H.; Abboudi, M. Nonisothermal Crystallization Kinetics of PLA/Nanosized YVO4 Composites as a Novel Nucleating Agent. J. Appl. Polymer. Sci. 2020, 137, 48340. DOI: 10.1002/app.48340.
  • Arshad, M. A.; Maaroufi, A. Relationship between Johnson–Mehl–Avrami and Sestak–Berggren Models in the Kinetics of Crystallization in Amorphous Materials. J. Non-Cryst. Solids 2015, 413, 53–58. DOI: 10.1016/j.jnoncrysol.2015.01.012.
  • Arshad, M. A. Kinetics and Thermodynamics of Beech Wood Pyrolysis Mechanism, Wood. Mater. Sci. Eng. 2024, 19, 334–345. DOI: 10.1080/17480272.2023.2242827.
  • Blázquez, J. S.; Romero, F. J.; Conde, C. F.; Conde, A. A Review of Different Models Derived from Classical Kolmogorov, Johnson and Mehl, and Avrami (KJMA) Theory to Recover Physical Meaning in Solid-State Transformations. Phys. Status Solidi. 2022, 259, 2100524. DOI: 10.1002/pssb.202100524.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.