33
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dielectric Characterization and Machine Learning-Based Predictions in Polymer Composites with Mixed Nanoparticles

, , , , , & show all
Received 15 Jun 2024, Accepted 20 Jun 2024, Published online: 28 Jun 2024

References

  • Huzaifa, M. M.; Fitrah, M. K. N.; Nurazzi, N. M.; Kassim, M. H. M.; Fazita, M. R. N. A Review on Functionalization and Mechanical Properties of Multiwalled Carbon Nanotubes/Natural Fibre–Reinforced Epoxy Composites. Emerg. Sustain. Renew. Compos 2024, 112–140. DOI: 10.1201/9781003408215.
  • Aziz, T.; Haq, F.; Farid, A.; Cheng, L.; Chuah, L. F.; Bokhari, A.; Mubashir, M.; Tang, D. Y. Y.; Show, P. L. The Epoxy Resin System: Function and Role of Curing Agents. Carbon Lett 2024, 34, 477–494. DOI: 10.1007/s42823-023-00547-7.
  • Podara, C.; Termine, S.; Modestou, M.; Semitekolos, D.; Tsirogiannis, C.; Karamitrou, M.; Trompeta, A.-F.; Milickovic, T. K.; Charitidis, C. Recent Trends of Recycling and Upcycling of Polymers and Composites: A Comprehensive Review. Recycling 2024, 9, 37. DOI: 10.3390/recycling9030037.
  • Wu, Y.; Fan, X.; Wang, Z.; Zhang, Z.; Liu, Z. A Mini‐Review of Ultra‐Low Dielectric Constant Intrinsic Epoxy Resins: Mechanism, Preparation and Application. Polymers for Advanced Techs 2024, 35, e6241. DOI: 10.1002/pat.6241.
  • Anwar, S.; Li, X. A Review of High-Quality Epoxy Resins for Corrosion-Resistant Applications. J. Coatings Technol. Res 2024, 1–20. DOI: 10.1007/s11998-023-00865-5.
  • Wang, L.; Yang, J.; Cheng, W.; Zou, J.; Zhao, D. Progress on Polymer Composites with Low Dielectric Constant and Low Dielectric Loss for High-Frequency Signal Transmission. Front. Mater 2021, 8, 774843. DOI: 10.3389/fmats.2021.774843.
  • Liao, L.; Ruan, W.; Zhang, M.; Lin, M. Recent Progress in Modification of Polyphenylene Oxide for Application in High-Frequency Communication. Materials (Basel) 2024, 17, 1086. DOI: 10.3390/ma17051086.
  • Yu, G.; Cheng, Y.; Duan, Z. Research Progress on Polymeric Inorganic Nanocomposites Insulating Materials. J. Nanomater 2022, 2022, 1–10. DOI: 10.1155/2022/1757788.
  • Tan, D. Q. The Search for Enhanced Dielectric Strength of Polymer‐Based Dielectrics: A Focused Review on Polymer Nanocomposites. J of Applied Polymer Sci 2020, 137, 49379. DOI: 10.1002/app.49379.
  • Vengatesan, M. R.; Mittal, V. Nanoparticle‐and Nanofiber‐Based Polymer Nanocomposites: An Overview. In Spherical and Fibrous Filler Composites, 1st ed.; Mittle, V., Ed., Wiley-VCH, Hoboken, 2016; pp 1–38. DOI: 10.1002/9783527670222.ch1.
  • Seydibeyoğlu, M. Ö.; Dogru, A.; Wang, J.; Rencheck, M.; Han, Y.; Wang, L.; Seydibeyoğlu, E. A.; Zhao, X.; Ong, K.; Shatkin, J. A.; et al. Review on Hybrid Reinforced Polymer Matrix Composites with Nanocellulose, Nanomaterials, and Other Fibers. Polymers (Basel) 2023, 15, 984. DOI: 10.3390/polym15040984.
  • Khan, F. S. A.; Mubarak, N. M.; Khalid, M.; Khan, M. M.; Tan, Y. H.; Walvekar, R.; Abdullah, E. C.; Karri, R. R.; Rahman, M. E. Comprehensive Review on Carbon Nanotubes Embedded in Different Metal and Polymer Matrix: Fabrications and Applications. Crit. Rev. Solid State Mater. Sci. 2022, 47, 837–864. DOI: 10.1080/10408436.2021.1935713.
  • Reddy, K. R.; Hassan, M.; Gomes, V. G. Hybrid Nanostructures Based on Titanium Dioxide for Enhanced Photocatalysis. Appl. Catal. A Gen. 2015, 489, 1–16. DOI: 10.1016/j.apcata.2014.10.001.
  • Hong, R. Y.; Chen, Q. Dispersion of Inorganic Nanoparticles in Polymer Matrices: Challenges and Solutions. Org. Hybrid Nanomater. 2015, 267, 1–38. DOI: 10.1007/12_2014_286.
  • Sharma, P.; Thakor, S.; Yadav, S. J.; Shaikh, I. A.; Shah, D.; V; Rana, V. A.; Solanki, M. Hybrid Nanofillers Loaded Epoxy Resin; Synthesis, Characterizations, and Dielectric Spectroscopy. J. Cryst. Growth 2023, 628, 127551. DOI: 10.1016/j.jcrysgro.2023.127551.
  • Tsikriteas, Z.; M.; Manika, G. C.; Patsidis, A. C.; Psarras, G.; C. Probing the Multifunctional Behaviour of Barium Zirconate/Barium Titanate/Epoxy Resin Hybrid Nanodielectrics. J. Therm. Anal. Calorim. 2020, 142, 231–243. DOI: 10.1007/s10973-020-09855-w.
  • Utara, S.; Jantachum, P.; Hunpratub, S.; Chanlek, N.; Phokha, S. Enhanced Dielectric Constant and Mechanical Investigation of Epoxidized Natural Rubber with TM-Doped CeO2 Nanocomposites. J. Alloys Compd. 2023, 939, 168601. DOI: 10.1016/j.jallcom.2022.168601.
  • Zakaria, M. R.; Akil, H. M.; Kudus, M. H. A.; Kadarman, A. H. Improving Flexural and Dielectric Properties of MWCNT/Epoxy Nanocomposites by Introducing Advanced Hybrid Filler System. Compos. Struct. 2015, 132, 50–64. DOI: 10.1016/j.compstruct.2015.05.020.
  • Jain, P.; Prakash, K.; Sardana, N.; Kumar, S.; Gupta, N.; Singh, A. K. Design of an Ultra-Thin Hepta-Band Metamaterial Absorber for Sensing Applications. Opt. Quant. Electron. 2022, 54, 569. DOI: 10.1007/s11082-022-03917-z.
  • Jain, P.; Joshi, A.; Joshi, A. Assessing the Efficacy of Machine Learning Models in Hydroxyapatite Nano-Powder Assisted Electro Discharge Machining of Ti-6Al-4 V Grade-5 Alloy. Int. J. Interact. Des. Manuf. 2024, (just accepted) DOI: 10.1007/s12008-024-01886-z.
  • Thike, P. H.; Zhao, Z.; Shi, P.; Jin, Y. Significance of Artificial Neural Network Analytical Models in Materials’ Performance Prediction. Bull. Mater. Sci. 2020, 43, 211. DOI: 10.1007/s12034-020-02154-y.
  • Jain, P.; Islam, M. T.; Alshammari, A. S. Comparative Analysis of Machine Learning Techniques for Metamaterial Absorber Performance in Terahertz Applications. Alex. Eng. J. 2024, 103, 51–59. DOI: 10.1016/j.aej.2024.05.111.
  • Wei, J.; Chu, X.; Sun, X. Y.; Xu, K.; Deng, H. X.; Chen, J.; Wei, Z.; Lei, M. Machine Learning in Materials Science. InfoMat 2019, 1, 338–358. DOI: 10.1002/inf2.12028.
  • Jain, P.; Chhabra, H.; Chauhan, U.; Prakash, K.; Samant, P.; Singh, D. K.; Soliman, M. S.; Islam, M. T. Machine Learning Techniques for Predicting Metamaterial Microwave Absorption Performance: A Comparison. IEEE Access 2023, 11, 128774–128783. DOI: 10.1109/ACCESS.2023.3332731.
  • Watpade, A. D.; Thakor, S.; Jain, P.; Mohapatra, P. P.; Vaja, C. R.; Joshi, A.; Shah, D. V.; Tariqul Islam, M. Comparative Analysis of Machine Learning Models for Predicting Dielectric Properties in MoS2 Nanofiller-Reinforced Epoxy Composites. Ain. Shams. Eng. J. 2024, 15, 102754. DOI: 10.1016/j.asej.2024.102754.
  • Jain, P.; Chhabra, H.; Chauhan, U.; Prakash, K.; Gupta, A.; Soliman, M. S.; Islam, M. S.; Islam, M. T. Machine Learning Assisted Hepta Band THz Metamaterial Absorber for Biomedical Applications. Sci. Rep. 2023, 13, 1792. DOI: 10.1038/s41598-023-29024-x.
  • Shingala, B.; Panchal, P.; Thakor, S.; Jain, P.; Joshi, A.; Vaja, C. R.; Siddharth, R. K.; Rana, V. A. Random Forest Regression Analysis for Estimating Dielectric Properties in Epoxy Composites Doped with Hybrid Nano Fillers. J. Macromol. Sci. Part B Phys. 2024, 1–15. DOI: 10.1080/00222348.2024.2322189.
  • Panchal, P.; Shingala, B.; Thakor, S.; Jain, P.; Vaja, C. R.; Joshi, A.; Shah, K. N.; Rana, V. A.; Pathak, J. XGBoost Regression Analysis of Dielectric Properties of Epoxy Resin with Inorganic Hybrid Nanofillers. J. Macromol. Sci. Part B Phys. 2024, 1–17. DOI: 10.1080/00222348.2024.2347746.
  • Thakor, S. G.; Rana, V. A.; Vankar, H. P.; Pandit, T. R. Dielectric Spectroscopy and Structural Characterization of Nano-Filler-Loaded Epoxy Resin. J. Adv. Dielect. 2021, 11, 2150011. DOI: 10.1142/S2010135X21500119.
  • S. G.; Thakor.; V. A.; Rana, H. P. V. Dielectric Spectroscopy of Mixed Nanoparticle Loaded Epoxy Resin. Int. J. Sci. Res. Rev. 2018, 7, 426–433. DOI: 10.1063/1.5032704.
  • Zaki, T.; Kabel, K. I.; Hassan, H. Preparation of High Pure α-Al2O3 Nanoparticles at Low Temperatures Using Pechini Method. Ceram. Int. 2012, 38, 2021–2026. DOI: 10.1016/j.ceramint.2011.10.037.
  • Wang, S.-J.; Zha, J.-W.; Li, W.-K.; Dang, Z.-M. Distinctive Electrical Properties in Sandwich-Structured Al2O3/Low Density Polyethylene Nanocomposites. Appl. Phys. Lett. 2016, 108, 92902. DOI: 10.1063/1.4943247.
  • Soulintzis, A.; Kontos, G.; Karahaliou, P.; Psarras, G. C.; Georga, S. N.; Krontiras, C. A. Dielectric Relaxation Processes in Epoxy Resin—ZnO Composites. J. Polym. Sci. B Polym. Phys. 2009, 47, 445–454. DOI: 10.1002/polb.21649.
  • Yogamalar, R.; Srinivasan, R.; Vinu, A.; Ariga, K.; Bose, A. C. X-Ray Peak Broadening Analysis in ZnO Nanoparticles. Solid State Commun. 2009, 149, 1919–1923. DOI: 10.1016/j.ssc.2009.07.043.
  • Thakor, S.; Rana, V. A.; Vankar, H. P. 2017 Dielectric Spectroscopy of SiO2, ZnO-Nanoparticle Loaded Epoxy Resin in the Frequency Range of 20 Hz to 2 MHz. Presented at the AIP Conference Proceedings; AIP Publishing, 1837, p. 40025. DOI: 10.1063/1.4982109.
  • Watpade, A. D.; Thakor, S.; Sharma, P.; Shah, D. V.; Vaja, C. R.; Jain, P. Synthesis, Characterization, and Dielectric Spectroscopy of TiO2 and ZnO Nanoparticle-Reinforced Epoxy Composites. J Mater Sci. Mater. Electron. 2024, 35, 466. DOI: 10.1007/s10854-024-12202-6.
  • Mandankumar, M.; Shivakumar, D.; Premkumar, S.; Manivannan, M.; Mohamed, M.; Prem, K.; Ayisha, A. Synthesis and Dielectric Studies of Magnetite Nanoparticles. J. Emer. Techn. In. Res. 2018, 5, 886.
  • Tomara, G. N.; Kerasidou, A. P.; Patsidis, A. C.; Karahaliou, P. K.; Psarras, G. C.; Georga, S. N.; Krontiras, C. A. Dielectric Response and Energy Storage Efficiency of Low Content TiO2-Polymer Matrix Nanocomposites. Compos. Part A Appl. Sci. Manuf. 2015, 71, 204–211. DOI: 10.1016/j.compositesa.2015.01.017.
  • Singha, S.; Thomas, M. J. Permittivity and Tan Delta Characteristics of Epoxy Nanocomposites in the Frequency Range of 1 MHz-1 GHz. IEEE Trans. Dielect. Electr. Insul. 2008, 15, 2–11. DOI: 10.1109/T-DEI.2008.4446731.
  • Thakor, S. G.; Rana, V. A.; Vankar, H. P.; Pandit, T. R. Microwave Dielectric Relaxation Spectroscopy of Nano Filler Loaded Epoxy Composite. IJPAP 2021, 59, 643–650. DOI: 10.56042/ijpap.v59i9.35707.
  • Sharma, P.; Shah, D.; V; Thakor, S.; Watpade, A. D.; Rana, V. A.; Vaja, C. R. Compositional Influence of Synthesized Magnetic Nanoparticles on Epoxy Composites: Dielectric, Magnetic and Optical Characteristics. J. Macromol. Sci. Part B Phys. 2023, 63, 279–313. DOI: 10.1080/00222348.2023.2263293.
  • El-Nahass, M. M.; Atta, A. A.; Kamel, M. A.; Huthaily, S. Y. AC Conductivity and Dielectric Characterization of Synthesized PN, N Dimethylaminobenzylidenemalononitrile (DBM) Organic Dye. Vacuum 2013, 91, 14–19. DOI: 10.1016/j.vacuum.2012.10.010.
  • Greenhoe, B. M.; Hassan, M. K.; Wiggins, J. S.; Mauritz, K. A. Universal Power Law Behavior of the AC Conductivity versus Frequency of Agglomerate Morphologies in Conductive Carbon Nanotube‐Reinforced Epoxy Networks. J. Polym. Sci. B Polym. Phys. 2016, 54, 1918–1923. DOI: 10.1002/polb.24121.
  • Hancock, J. T.; Khoshgoftaar, T. M. CatBoost for Big Data: An Interdisciplinary Review. J. Big Data 2020, 7, 94. DOI: 10.1186/s40537-020-00369-8.
  • Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T. Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree Presented at the I Proceedings of the 31st International Conference on Neural Information Processing Systems; Guyon, I., Von Luxburg, U.,Editors, California, 2017.
  • Jain, P.; Yedukondalu, J.; Chhabra, H.; Chauhan, U.; Sharma, L. D. EEG-Based Detection of Cognitive Load Using VMD and LightGBM Classifier. Int. J. Mach. Learn. Cyber. 2024, DOI: 10.1007/s13042-024-02142-2.
  • Jain, P.; Joshi, U.; Joshi, A.; Patel, V.; Thakor, S. Comparative Analysis of Machine Learning Techniques for Predicting Wear and Friction Properties of MWCNT Reinforced PMMA Nanocomposites. Ain Shams Eng. J. 2024, 102895. DOI: 10.1016/j.asej.2024.102895.
  • Rawal, K.; Devendrabhai, P. D.; Pataniya, P.; Jain, P.; Joshi, A.; Solanki, G. K.; Tannarana, M. Versatile Photo-Sensing Ability of Paper Based Flexible 2D-Sb0.3Sn0.7Se2 Photodetector and Performance Prediction with Machine Learning Algorithm. Opt. Mater. 2024, 152, 115547. DOI: 10.1016/j.optmat.2024.115547.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.