9
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Tailored therapies: Exploring macromolecule based delivery science for personalized medicine

Received 17 Jun 2024, Accepted 21 Jun 2024, Published online: 29 Jun 2024

References

  • Takakura, Y. Pharmacokinetic Analysis and Development of Delivery Systems of Macromolecular Drugs. Drug Metab. Pharmacokinet. 1996, 11, 436–442. DOI: 10.2133/dmpk.11.436.
  • Takakura, Y. Development of Drug Delivery Systems for Macromolecular Drugs. Yakugaku Zasshi. 1996, 116, 519–532. DOI: 10.1248/YAKUSHI1947.116.7_519.
  • Belting, M.; Wittrup, A. Macromolecular Drug Delivery: Basic Principles and Therapeutic Applications. Mol. Biotechnol. 2009, 43, 89–94. DOI: 10.1007/s12033-009-9185-5.
  • Takakura, Y.; Hashida, M. Macromolecular Carrier Systems for Targeted Drug Delivery: Pharmacokinetic Considerations on Biodistribution. Pharm. Res. 1996, 13, 820–831. DOI: 10.1023/A:1016084508097.
  • Kakkar, A.; Traverso, G.; Farokhzad, O.; Weissleder, R.; Langer, R. Evolution of Macromolecular Complexity in Drug Delivery Systems. Nat. Rev. Chem. 2017, 1, 63–75. DOI: 10.1038/S41570-017-0063.
  • Juliano, R. Challenges to Macromolecular Drug Delivery. Biochem. Soc. Trans. 2007, 35, 41–43. DOI: 10.1042/BST0350041.
  • Ranade, V. Drug Delivery Systems. 1. Site‐Specific Drug Delivery Using Liposomes as Carriers. J. Clin. Pharmacol. 1989, 29, 685–694. DOI: 10.1002/j.1552-4604.1989.tb03403.x.
  • Matthews, S. E.; Pouton, C.; Threadgill, M. Macromolecular Systems for Chemotherapy and Magnetic Resonance Imaging. Adv. Drug Deliv. Rev. 1996, 18, 219–267. DOI: 10.1016/0169-409X(95)00098-R.
  • Hwang, S.; Byun, Y. Advances in Oral Macromolecular Drug Delivery. Expert Opin. Drug Deliv. 2014, 11, 1955–1967. DOI: 10.1517/17425247.2014.945420.
  • Matyjaszewski, K. Macromolecular Engineering: From Rational Design through Precise Macromolecular Synthesis and Processing to Targeted Macroscopic Material Properties. Prog. Polym. Sci. 2005, 30, 858–875. DOI: 10.1016/j.progpolymsci.2005.06.004.
  • Palma, C.-A.; Samorì, P. Blueprinting Macromolecular Electronics. Nat. Chem. 2011, 3, 431–436. DOI: 10.1038/nchem.1043.
  • Ng, D.; Wu, Y.; Kuan, S. L.; Weil, T. Programming Supramolecular Biohybrids as Precision Therapeutics. Acc. Chem. Res. 2014, 47, 3471–3480. DOI: 10.1021/ar5002445.
  • Percec, V. Merging Macromolecular and Supramolecular Chemistry into Bioinspired Synthesis of Complex Systems. Isr. J. Chem. 2020, 60, 48–66. DOI: 10.1002/ijch.202000004.
  • Lutz, J.; Schlaad, H. Modular Chemical Tools for Advanced Macromolecular Engineering. Polymer 2008, 49, 817–824. DOI: 10.1016/j.polymer.2007.10.045.
  • Chu, T. W.; Kopeček, J. Drug-Free Macromolecular Therapeutics–A New Paradigm in Polymeric Nanomedicines. Biomater. Sci. 2015, 3, 908–922. DOI: 10.1039/C4BM00442F.
  • Hedrick, J.; Magbitang, T.; Connor, E.; Glauser, T.; Volksen, W.; Hawker, C.; Lee, V.; Miller, R. D. Application of Complex Macromolecular Architectures for Advanced Microelectronic Materials. Chem. Eur. J. 2002, 8, 3308–3319. DOI: 10.1002/1521-3765(20020802)8:15<3308::AID-CHEM3308>3.0.CO;2-D.
  • Goseki, R.; Ito, S.; Matsuo, Y.; Higashihara, T.; Hirao, A. Precise Synthesis of Macromolecular Architectures by Novel Iterative Methodology Combining Living Anionic Polymerization with Specially Designed Linking Chemistry. Polymers 2017, 9, 470–481. DOI: 10.3390/polym9100470.
  • Matyjaszewski, K.; Tsarevsky, N. Macromolecular Engineering by Atom Transfer Radical Polymerization. J. Am. Chem. Soc. 2014, 136, 6513–6533. DOI: 10.1021/ja408069v.
  • Gref, R.; Lück, M.; Quellec, P.; Marchand, M.; Dellacherie, E.; Harnisch, S.; Blunk, T.; Müller, R. Stealth’ Corona-Core Nanoparticles Surface Modified by Polyethylene Glycol (PEG): Influences of the Corona (PEG Chain Length and Surface Density) and of the Core Composition on Phagocytic Uptake and Plasma Protein Adsorption. Colloids Surf. B Biointerfaces 2000, 18, 301–313. DOI: 10.1016/S0927-7765(99)00156-3.
  • Das, G. S.; Rao, G. H. R.; Wilson, R. F.; Chandy, T. Colchicine Encapsulation within Poly(Ethylene Glycol)-Coated Poly(Lactic Acid)/Poly(Epsilon-Caprolactone) Microspheres-Controlled Release Studies. Drug Deliv. 2000, 7, 129–138. DOI: 10.1080/10717540050120160.
  • Ruan, G.; Feng, S. S. Preparation and Characterization of Poly (Lactic Acid)–Poly (Ethylene Glycol)–Poly (Lactic Acid)(PLA–PEG–PLA) Microspheres for Controlled Release of Paclitaxel. Biomaterials 2003, 24, 5037–5044. DOI: 10.1016/S0142-9612(03)00419-8.
  • Zhou, S.; Deng, X. M.; Yang, H. Biodegradable Poly(Epsilon-Caprolactone)-Poly(Ethylene Glycol) Block Copolymers: Characterization and Their Use as Drug Carriers for a Controlled Delivery System. Biomaterials 2003, 24, 3563–3570. DOI: 10.1016/S0142-9612(03)00207-2.
  • Rajan, M.; Raj, V. Formation and Characterization of Chitosan-Polylacticacid-Polyethylene Glycol-Gelatin Nanoparticles: A Novel Biosystem for Controlled Drug Delivery. Carbohydr. Polym. 2013, 98, 951–958. DOI: 10.1016/j.carbpol.2013.05.025.
  • Goyal, K.; Konar, A.; Kumar, B. S. H.; Koul, V. Lactoferrin-Conjugated pH and Redox-Sensitive Polymersomes Based on PEG-S-S-PLA-PCL-OH Boost Delivery of Bacosides to the Brain. Nanoscale 2018, 10, 17781–17798. DOI: 10.1039/c8nr03828g.
  • Miyamoto, S.; Takaoka, K.; Okada, T.; Yoshikawa, H.; Hashimoto, J.; Suzuki, S.; Ono, K. Polylactic Acid-Polyethylene Glycol Block Copolymer. A New Biodegradable Synthetic Carrier for Bone Morphogenetic Protein. Clin. Orthop. Relat. Res. 1993, 294, 333–343. DOI: 10.1097/00003086-199309000-00050.
  • Boffito, M.; Sirianni, P.; Di Rienzo, A.; Chiono, V. Thermosensitive Block Copolymer Hydrogels Based on Poly(ɛ-Caprolactone) and Polyethylene Glycol for Biomedical Applications: State of the Art and Future Perspectives. J. Biomed. Mater. Res. A 2015, 103, 1276–1290. DOI: 10.1002/jbm.a.35253.
  • Zhang, Y.; Luo, S.; Liang, Y.; Zhang, H.; Peng, X.; He, B.; Li, S. Synthesis, Characterization, and Property of Biodegradable PEG-PCL-PLA Terpolymers with Miktoarm Star and Triblock Architectures as Drug Carriers. J. Biomater. Appl. 2018, 32, 1139–1152. DOI: 10.1177/0885328217751247.
  • Liu, H.; Li, S.; Zhang, M.; Shao, W.; Zhao, Y. Facile Synthesis of ABCDE-Type H-Shaped Quintopolymers by Combination of ATRP, ROP, and Click Chemistry and Their Potential Applications as Drug Carriers. J. Polym. Sci. A Polym. Chem. 2012, 50, 4705–4716. DOI: 10.1002/pola.26285.
  • Zhang, W.; Li, Y.; Liu, L.; Sun, Q.; Shuai, X.; Zhu, W. L.; Chen, Y. Amphiphilic Toothbrushlike Copolymers Based on Poly(Ethylene Glycol) and Poly(Epsilon-Caprolactone) as Drug Carriers with Enhanced Properties. Biomacromolecules 2010, 11, 1331–1338. DOI: 10.1021/bm100116g.
  • Bareford, L.; Swaan, P. Endocytic Mechanisms for Targeted Drug Delivery. Adv. Drug Deliv. Rev. 2007, 59, 748–758. DOI: 10.1016/J.ADDR.2007.06.008.
  • Kwon, Y.; Li, Y. T.; Naik, S.; Liang, J. F.; Huang, Y.; Park, Y.; Yang, V. The ATTEMPTS Delivery Systems for Macromolecular Drugs. Expert Opin. Drug Deliv. 2008, 5, 1255–1266. DOI: 10.1517/17425240802498059.
  • Chen, S.; Zhao, X.; Chen, J.; Chen, J.; Kuznetsova, L.; Wong, S.; Ojima, I. Mechanism-Based Tumor-Targeting Drug Delivery System. Validation of Efficient Vitamin Receptor-Mediated Endocytosis and Drug Release. Bioconjug. Chem. 2010, 21, 979–987. DOI: 10.1021/bc9005656.
  • Zhou, P.; Sun, X.; Zhang, Z. Kidney–Targeted Drug Delivery Systems. Acta Pharm. Sin. B 2014, 4, 37–42. DOI: 10.1016/j.apsb.2013.12.005.
  • Maity, A. R.; Stepensky, D. Delivery of Drugs to Intracellular Organelles Using Drug Delivery Systems: Analysis of Research Trends and Targeting Efficiencies. Int. J. Pharm. 2015, 496, 268–274. DOI: 10.1016/j.ijpharm.2015.10.053.
  • Kawakami, S.; Hashida, M. Glycosylation-Mediated Targeting of Carriers. J. Control. Release 2014, 190, 542–555. DOI: 10.1016/j.jconrel.2014.06.001.
  • Neerman, M. Enhancing the Site-Specific Targeting of Macromolecular Anticancer Drug Delivery Systems. Curr. Drug Targets. 2006, 7, 229–235. DOI: 10.2174/138945006775515473.
  • Jones, A. Gateways and Tools for Drug Delivery: Endocytic Pathways and the Cellular Dynamics of Cell Penetrating Peptides. Int. J. Pharm. 2008, 354, 34–38. DOI: 10.1016/J.IJPHARM.2007.10.046.
  • Raza, A.; Rasheed, T.; Nabeel, F.; Hayat, U.; Bilal, M.; Iqbal, H. M. N. Endogenous and Exogenous Stimuli-Responsive Drug Delivery Systems for Programmed Site-Specific Release. Molecules 2019, 24, 1117. DOI: 10.3390/molecules24061117.
  • Kojima, C. Design of Stimuli-Responsive Dendrimers. Expert Opin. Drug Deliv. 2010, 7, 307–319. DOI: 10.1517/17425240903530651.
  • Karimi, M.; Eslami, M.; Sahandi-Zangabad, P.; Mirab, F.; Farajisafiloo, N.; Shafaei, Z.; Ghosh, D.; Bozorgomid, M.; Dashkhaneh, F.; Hamblin, M. R. pH-Sensitive Stimulus-Responsive Nanocarriers for Targeted Delivery of Therapeutic Agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 8, 696–716. DOI: 10.1002/wnan.1389.
  • Werner, C. From Physico- to Bio-Responsive Polymers. Express Polym. Lett. 2009, 3, 605–605. DOI: 10.3144/expresspolymlett.2009.75.
  • Gunathilake, T. M. S. U.; Ching, Y.; Chuah, C.; Rahman, N.; Nai-Shang, L. Recent Advances in Celluloses and Their Hybrids for Stimuli-Responsive Drug Delivery. Int. J. Biol. Macromol. 2020, 158, 670–688. DOI: 10.1016/j.ijbiomac.2020.05.010.
  • Zhao, L.; Yan, Y.; Huang, J. Redox-Gated Potential Micellar Carriers Based on Electrostatic Assembly of Soft Coordination Suprapolymers. Langmuir 2012, 28, 5548–5554. DOI: 10.1021/la300590t.
  • Rasheed, T.; Bilal, M.; Abu-Thabit, N. Y.; Iqbal, H. M. N. The Smart Chemistry of Stimuli-Responsive Polymeric Carriers for Target Drug Delivery Applications. Smart Polym. Nanocompos. 2018, 1, 61–99. DOI: 10.1016/B978-0-08-101997-9.00003-5.
  • Huo, M.; Yuan, J.; Tao, L.; Wei, Y. Redox-Responsive Polymers for Drug Delivery: From Molecular Design to Applications. Polym. Chem. 2014, 5, 1519–1528. DOI: 10.1039/C3PY01192E.
  • Wen, L.; Hu, Y.; Meng, T.; Tan, Y.; Zhao, M.; Dai, S.; Yuan, H.; Hu, F. Redox-Responsive Polymer Inhibits Macrophages Uptake for Effective Intracellular Gene Delivery and Enhanced Cancer Therapy. Colloids Surf. B Biointerfaces 2019, 175, 392–402. DOI: 10.1016/j.colsurfb.2018.12.016.
  • Roy, D.; Cambre, J.; Sumerlin, B. Future Perspectives and Recent Advances in Stimuli-Responsive Materials. Prog. Polym. Sci. 2010, 35, 278–301. DOI: 10.1016/j.progpolymsci.2009.10.008.
  • Kim, T. H.; Lee, S.; Chen, X. Nanotheranostics for Personalized Medicine. Expert Rev. Mol. Diagn. 2013, 13, 257–269. DOI: 10.1586/erm.13.15.
  • Ryu, J.; Lee, S.; Son, S.; Kim, S. H.; Leary, J.; Choi, K.; Kwon, I. Theranostic Nanoparticles for Future Personalized Medicine. J. Control. Release 2014, 190, 477–484. DOI: 10.1016/j.jconrel.2014.04.027.
  • Kojima, R.; Aubel, D.; Fussenegger, M. Novel Theranostic Agents for Next-Generation Personalized Medicine: Small Molecules, Nanoparticles, and Engineered Mammalian Cells. Curr. Opin. Chem. Biol. 2015, 28, 29–38. DOI: 10.1016/j.cbpa.2015.05.021.
  • Moorthy, H.; Govindaraju, T. Dendrimer Architectonics to Treat Cancer and Neurodegenerative Diseases with Implications in Theranostics and Personalized Medicine. ACS Appl. Bio Mater. 2021, 4, 1115–1139. DOI: 10.1021/ACSABM.0C01319.
  • Terreno, E.; Uggeri, F.; Aime, S. Image Guided Therapy: The Advent of Theranostic Agents. J. Control. Release 2012, 161, 328–337. DOI: 10.1016/j.jconrel.2012.05.028.
  • Kelkar, S.; Reineke, T. Theranostics: Combining Imaging and Therapy. Bioconjug. Chem. 2011, 22, 1879–1903. DOI: 10.1021/bc200151q.
  • Baum, R.; Kulkarni, H. THERANOSTICS: From Molecular Imaging Using Ga-68 Labeled Tracers and PET/CT to Personalized Radionuclide Therapy - The Bad Berka Experience. Theranostics 2012, 2, 437–447. DOI: 10.7150/thno.3645.
  • Bolognesi, M.; Gandini, A.; Prati, F.; Uliassi, E. From Companion Diagnostics to Theranostics: A New Avenue for Alzheimer’s Disease? J. Med. Chem. 2016, 59, 7759–7770. DOI: 10.1021/acs.jmedchem.6b00151.
  • Charron, D. M.; Chen, J.; Zheng, G. Theranostic Lipid Nanoparticles for Cancer Medicine. Cancer Treat. Res. 2015, 166, 103–127. DOI: 10.1007/978-3-319-16555-4_5.
  • Vats, S.; Singh, M.; Siraj, S.; Singh, H.; Tandon, S. Role of Nanotechnology in Theranostics and Personalized Medicines. J. Health Res. Rev. 2017, 4, 1–7. DOI: 10.4103/2394-2010.199328.
  • Sezaki, H.; Hashida, M. Macromolecule-Drug Conjugates in Targeted Cancer Chemotherapy. Crit. Rev. Ther. Drug Carrier Syst. 1984, 1, 1–38. DOI: N/A.
  • Wistuba, I.; Gelovani, J.; Jacoby, J. J.; Davis, S. E.; Herbst, R. Methodological and Practical Challenges for Personalized Cancer Therapies. Nat. Rev. Clin. Oncol. 2011, 8, 135–141. DOI: 10.1038/nrclinonc.2011.2.
  • Netti, P.; Hamberg, L.; Babich, J.; Kierstead, D.; Graham, W.; Hunter, G.; Wolf, G.; Fischman, A.; Boucher, Y.; Jain, R. Enhancement of Fluid Filtration across Tumor Vessels: Implication for Delivery of Macromolecules. Proc. Natl. Acad. Sci. U S A 1999, 96, 3137–3142. DOI: 10.1073/PNAS.96.6.3137.
  • Meric-Bernstam, F.; Mills, G. Overcoming Implementation Challenges of Personalized Cancer Therapy. Nat. Rev. Clin. Oncol. 2012, 9, 542–548. DOI: 10.1038/nrclinonc.2012.127.
  • Snyder, J. W.; Greco, W.; Bellnier, D.; Vaughan, L.; Henderson, B. Photodynamic Therapy: A Means to Enhanced Drug Delivery to Tumors. Cancer Res. 2003, 63, 8126–8131. DOI: N/A.
  • Kong, H.; Mooney, D. Microenvironmental Regulation of Biomacromolecular Therapies. Nat. Rev. Drug Discov. 2007, 6, 455–463. DOI: 10.1038/nrd2309.
  • Linsley, P.; Greenbaum, C.; Nepom, G. Uncovering Pathways to Personalized Therapies in Type 1 Diabetes. Diabetes 2021, 70, 831–841. DOI: 10.2337/db20-1185.
  • Guo, Q.; Jiang, C. Delivery Strategies for Macromolecular Drugs in Cancer Therapy. Acta Pharm. Sin. B 2020, 10, 979–986. DOI: 10.1016/j.apsb.2020.01.009.
  • Bharadwaj, V. N.; Copeland, C.; Mathew, E.; Newbern, J.; Anderson, T. R.; Lifshitz, J.; Kodibagkar, V. D.; Stabenfeldt, S. E. Sex-Dependent Macromolecule and Nanoparticle Delivery in Experimental Brain Injury. Tissue Eng. A 2020, 26, 688–701. DOI: 10.1089/ten.tea.2020.0040.
  • Waksman, R.; Pakala, R. Biodegradable and Bioabsorbable Stents. Curr. Pharm. Des. 2010, 16, 4041–4051. DOI: 10.2174/138161210794454905.
  • Ramcharitar, S.; Serruys, P. Fully Biodegradable Coronary Stents. Am. J. Cardiovasc. Drugs 2008, 8, 305–314. DOI: 10.2165/00129784-200808050-00003.
  • Somszor, K.; Bas, O.; Karimi, F.; Shabab, T.; Saidy, N. T.; O'Connor, A. J.; Ellis, A. V.; Hutmacher, D.; Heath, D. E. Personalized, Mechanically Strong, and Biodegradable Coronary Artery Stents via Melt Electrowriting. ACS Macro Lett. 2020, 9, 1732–1739. DOI: 10.1021/acsmacrolett.0c00644.
  • Lorenzo-Zúñiga, V.; Moreno-de-Vega, V.; Marín, I.; Boix, J. Biodegradable Stents in Gastrointestinal Endoscopy. World J. Gastroenterol. 2014, 20, 2212–2217. DOI: 10.3748/wjg.v20.i9.2212.
  • Wang, Z.; Li, N.; Li, R.; Li, Y.; W.; Ruan, L. Biodegradable Intestinal Stents: A Review. Prog. Nat. Sci. Mater. Int. 2014, 24, 423–432. DOI: 10.1016/j.pnsc.2014.08.008.
  • Byrne, R.; Kastrati, A.; Massberg, S.; Wieczorek, A.; Laugwitz, K.; Hadamitzky, M.; Schulz, S.; Pache, J.; Fusaro, M.; Hausleiter, J.; et al. Biodegradable Polymer versus Permanent Polymer Drug-Eluting Stents and Everolimus- versus Sirolimus-Eluting Stents in Patients with Coronary Artery Disease: 3-Year Outcomes from a Randomized Clinical Trial. J. Am. Coll. Cardiol. 2011, 58, 1325–1331. DOI: 10.1016/j.jacc.2011.06.027.
  • Lischke, R.; Pozniak, J.; Vondrys, D.; Elliott, M. Novel Biodegradable Stents in the Treatment of Bronchial Stenosis after Lung Transplantation. Eur. J. Cardiothorac. Surg. 2011, 40, 619–624. DOI: 10.1016/j.ejcts.2010.12.047.
  • Stefanini, G. G.; Byrne, R. A.; Serruys, P. W.; de Waha, A.; Meier, B.; Massberg, S.; Jüni, P.; Schömig, A.; Windecker, S.; Kastrati, A. Biodegradable Polymer Drug-Eluting Stents Reduce the Risk of Stent Thrombosis at 4 Years in Patients Undergoing Percutaneous Coronary Intervention: A Pooled Analysis of Individual Patient Data from the ISAR-TEST 3, ISAR-TEST 4, and LEADERS Randomized Trials. Eur. Heart J. 2012, 33, 1214–1222. DOI: 10.1093/eurheartj/ehs086.
  • Hermawan, H.; Purnama, A.; Dube, D.; Couet, J.; Mantovani, D. Fe-Mn Alloys for Metallic Biodegradable Stents: Degradation and Cell Viability Studies. Acta Biomater. 2010, 6, 1852–1860. DOI: 10.1016/j.actbio.2009.11.025.
  • Rejchrt, S.; Kopacova, M.; Brozik, J.; Bures, J. Biodegradable Stents for the Treatment of Benign Stenoses of the Small and Large Intestines. Endoscopy 2011, 43, 911–917. DOI: 10.1055/s-0030-1256405.
  • Ober, C. K.; Cheng, S. Z.; Hammond, P. T.; Muthukumar, M.; Reichmanis, E.; Wooley, K. L.; Lodge, T. P. Research in Macromolecular Science: Challenges and Opportunities for the Next Decade. Macromolecules 2009, 42, 465–471. DOI: 10.1021/ma802463z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.