0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Novel Design of Protein-functionalized Gold Nanoparticles Loaded with Dichlororuthenium (II) (p-cymene) (1,3,5-triaza-7-phosphaadamantane) (RAPTA-C) to Induce Reactive Oxygen Species (ROS)-mediated Apoptosis in Ovarian Cancer Cells

&
Received 08 Mar 2024, Accepted 25 Jun 2024, Published online: 12 Jul 2024

References

  • Farzam, O. R.; Mehran, N.; Bilan, F.; Aghajani, E.; Dabbaghipour, R.; Shahgoli, G. A.; Baradaran, B. Nanoparticles for Imaging-Guided Photothermal Therapy of Colorectal Cancer. Heliyon. 2023, 9, e21334. DOI: 10.1016/j.heliyon.2023.e21334.
  • Pan, Q.; Tian, J.; Zhu, H.; Hong, L.; Mao, Z.; Oliveira, J. M.; Reis, R. L.; Li, X. Tumor-Targeting Polycaprolactone Nanoparticles with Codelivery of Paclitaxel and IR780 for Combinational Therapy of Drug-Resistant Ovarian Cancer. ACS Biomater. Sci. Eng. 2020, 6, 2175–2185. 10.1021/acsbiomaterials.0c00163.
  • Wang, S.; Wu, W.; Liu, Y.; Wang, C.; Xu, Q.; Lv, Q.; Huang, R.; Li, X. Targeted Peptide-Modified Oxidized Mesoporous Carbon Nanospheres for Chemo-Thermo Combined Therapy of Ovarian Cancer In Vitro. Drug Deliv. 2022, 29, 1947–1952. DOI: 10.1080/10717544.2022.2089298.
  • Zhang, D.; Wu, T.; Qin, X.; Qiao, Q.; Shang, L.; Song, Q.; Yang, C.; Zhang, Z. Intracellularly Generated Immunological Gold Nanoparticles for Combinatorial Photothermal Therapy and Immunotherapy against Tumor. Nano Lett. 2019, 19, 6635–6646. DOI: 10.1021/acs.nanolett.9b02903.
  • Wang, S.; Zheng, H.; Zhou, L.; Cheng, F.; Liu, Z.; Zhang, H.; Zhang, Q. Injectable Redox and Light Responsive MnO2 Hybrid Hydrogel for Simultaneous Melanoma Therapy and Multidrug-Resistant Bacteria-Infected Wound Healing. Biomaterials. 2020, 260, 120314. DOI: 10.1016/j.biomaterials.2020.120314.
  • Sun, H.; Su, J.; Meng, Q.; Yin, Q.; Chen, L.; Gu, W.; Zhang, Z.; Yu, H.; Zhang, P.; Wang, S.; Li, Y. Cancer Cell Membrane-Coated Gold Nanocages with Hyperthermia-Triggered Drug Release and Homotypic Target Inhibit Growth and Metastasis of Breast Cancer. Adv. Funct. Mater. 2017, 27, 1604300. DOI: 10.1002/adfm.201604300.
  • Kashin, M.; Kakei, Y.; Teraoka, S.; Hasegawa, T.; Yamaguchi, A.; Fukuoka, T.; Sasaki, R.; Akashi, M. Gold Nanoparticles Enhance EGFR Inhibition and Irradiation Effects in Head and Neck Squamous Carcinoma Cells. Biomed Res. Int. 2020, 2020, 1–10. DOI: 10.1155/2020/1281645.
  • Tianshuo, L.; Daxiang, C.; Tianyuan, L.; Xinna, Y.; Meizhen, H. Gold NanoStars: Synthesis, Modification and Application. Nano. Biomed. Eng. Application. 2023, 15, 330–341. DOI: 10.26599/NBE.2023.9290025.
  • Guo, Y.; Li, Z.; Guo, B.; Wang, B.; Tu, Y. Targeting-Specific Nanoprobes in the Second Near-Infrared Window for Biomedical Applications. Nano Biomed. Eng. 2024, 16, 135–151. DOI: 10.26599/NBE.2024.9290061.
  • Martín-Banderas, L.; Alvarez-Fuentes, J.; Durán-Lobato, M.; Prados, J.; Melguizo, C.; Fernández-Arévalo, M.; Holgado, M. Á. Cannabinoid Derivate-Loaded PLGA Nanocarriers for Oral Administration: Formulation, Characterization, and Cytotoxicity Studies. Int. J. Nanomedicine. 2012, 7, 5793–5806. DOI: 10.2147/IJN.S34633.
  • Batchelor, L. K.; Ortiz, D.; Dyson, P. J. Histidine Targeting Heterobimetallic Ruthenium(II)-Gold(I) Complexes. Inorg. Chem. 2019, 58, 2501–2513. DOI: 10.1021/acs.inorgchem.8b03069.
  • Kotcherlakota, R.; Vydiam, K.; Jeyalakshmi, S. D.; Mukherjee, S.; Roy, A.; Kuncha, M.; Rao, T. N.; Sistla, R.; Gopal, V.; Patra, C. R. Restoration of P53 Function in Ovarian Cancer Mediated by Gold Nanoparticle-Based EGFR Targeted Gene Delivery System. ACS Biomater. Sci. Eng. 2019, 5, 3631–3644. DOI: 10.1021/acsbiomaterials.9b00006.
  • Orza, A.; Soritau, O.; Olenic, L.; Diudea, M.; Florea, A.; Rus Ciuca, D.; Mihu, C.; Casciano, D.; Biris, A. S. Electrically Conductive Gold-Coated Collagen Nanofibers for Placental-Derived Mesenchymal Stem Cells Enhanced Differentiation and Proliferation. ACS Nano. 2011, 5, 4490–4503. DOI: 10.1021/nn1035312.
  • Zhu, G.; Sun, Z.; Hui, P.; Chen, W.; Jiang, X. Composite Film with Antibacterial Gold Nanoparticles and Silk Fibroin for Treating Multidrug-Resistant E. Coli-Infected Wounds. ACS Biomater. Sci. Eng. 2021, 7, 1827–1835. DOI: 10.1021/acsbiomaterials.0c01271.
  • Ranjana, R.; Parushuram, N.; Harisha, K. S.; Asha, S.; Sangappa, Y. Silk Fibroin a Bio-Template for Synthesis of Different Shaped Gold Nanoparticles: Characterization and Ammonia Detection Application. Mater. Today Proc. 2020, 27, 434–439. DOI: 10.1016/j.matpr.2019.11.259.
  • Lakshmeesha Rao, B.; Gowda, M.; Asha, S.; Byrappa, K.; Narayana, B.; Somashekar, R.; Wang, Y.; Madhu, L. N.; Sangappa, Y. Rapid Synthesis of Gold Nanoparticles Using Silk Fibroin: Characterization, Antibacterial Activity, and Anticancer Properties. Gold Bull. 2017, 50, 289–297. DOI: 10.1007/s13404-017-0218-8.
  • Li, J.; Cha, R.; Zhao, X.; Guo, H.; Luo, H.; Wang, M.; Zhou, F.; Jiang, X. Gold Nanoparticles Cure Bacterial Infection with Benefit to Intestinal Microflora. ACS Nano. 2019, 13, 5002–5014. DOI: 10.1021/acsnano.9b01002.
  • Bandyopadhyay, A.; Chowdhury, S. K.; Dey, S.; Moses, J. C.; Mandal, B. B. Silk : A Promising Biomaterial Opening New Vistas Review. J. Indian Inst. Sci. 2019, 99, 445–487. DOI: 10.1007/s41745-019-00114-y.
  • Bhardwaj, N.; Nguyen, Q. T.; Chen, A. C.; Kaplan, D. L.; Sah, R. L.; Kundu, S. C. Potential of 3-D Tissue Constructs Engineered from Bovine Chondrocytes/Silk Fibroin-Chitosan for in Vitro Cartilage Tissue Engineering. Biomaterials. 2011, 32, 5773–5781. DOI: 10.1016/j.biomaterials.2011.04.061.
  • Nalvuran, H.; Elçin, A. E.; Elçin, Y. M. Nanofibrous Silk Fibroin/Reduced Graphene Oxide Scaffolds for Tissue Engineering and Cell Culture Applications. Int. J. Biol. Macromol. 2018, 114, 77–84. DOI: 10.1016/j.ijbiomac.2018.03.072.
  • Altman, A. M.; Gupta, V.; Ríos, C. N.; Alt, E. U.; Mathur, A. B. Adhesion, Migration and Mechanics of Human Adipose-Tissue-Derived Stem Cells on Silk Fibroin-Chitosan Matrix. Acta Biomater. 2010, 6, 1388–1397. DOI: 10.1016/j.actbio.2009.10.034.
  • Yan, S.; Feng, L.; Zhu, Q.; Yang, W.; Lan, Y.; Li, D.; Liu, Y.; Xue, W.; Guo, R.; Wu, G. Controlled Release of BMP-2 from a Heparin-Conjugated Strontium-Substituted Nanohydroxyapatite/Silk Fibroin Scaffold for Bone Regeneration. ACS Biomater. Sci. Eng. 2018, 4, 3291–3303. DOI: 10.1021/acsbiomaterials.8b00459.
  • Lu, M.; Chen, F.; Noy, J. M.; Lu, H.; Stenzel, M. H. Enhanced Antimetastatic Activity of the Ruthenium Anticancer Drug RAPTA-C Delivered in Fructose-Coated Micelles. Macromol. Biosci. 2017, 17, 11. DOI: 10.1002/mabi.201600513.
  • Hudej, R.; Kljun, J.; Kandioller, W.; Repnik, U.; Turk, B.; Hartinger, C. G.; Keppler, B. K.; Miklavčič, D.; Turel, I. Synthesis and Biological Evaluation of the Thionated Antibacterial Agent Nalidixic Acid and Its Organoruthenium(II) Complex. Organometallics. 2012, 31, 5867–5874. DOI: 10.1021/om300424w.
  • Lu, M.; Henry, C. E.; Lai, H.; Khine, Y. Y.; Ford, C. E.; Stenzel, M. H. A New 3D Organotypic Model of Ovarian Cancer to Help Evaluate the Antimetastatic Activity of RAPTA-C Conjugated Micelles. Biomater. Sci. 2019, 7, 1652–1660. DOI: 10.1039/c8bm01326h.
  • Lu, H.; Blunden, B. M.; Scarano, W.; Lu, M.; Stenzel, M. H. Anti-Metastatic Effects of RAPTA-C Conjugated Polymeric Micelles on Two-Dimensional (2D) Breast Tumor Cells and Three-Dimensional (3D) Multicellular Tumor Spheroids. Acta Biomater. 2016, 32, 68–76. DOI: 10.1016/j.actbio.2015.12.020.
  • Lu, M.; Wang, S.; Khine, Y. Y.; Hong, Y.; Zheng, J.; Lu, H.; Stenzel, M. H. Dual Drug Delivery System of RAPTA-C and Paclitaxel Based on Fructose Coated Nanoparticles for Metastatic Cancer Treatment. Biochem. Biophys. Res. Commun. 2023, 640, 134–141. DOI: 10.1016/j.bbrc.2022.12.013.
  • Liu, H.; Yuan, M.; Sonamuthu, J.; Yan, S.; Huang, W.; Cai, Y.; Yao, J. A Dopamine-Functionalized Aqueous-Based Silk Protein Hydrogel Bioadhesive for Biomedical Wound Closure. New J. Chem. 2020, 44, 884–891. DOI: 10.1039/C9NJ04545G.
  • Xu, Y.; Wang, H.; Zhang, M.; Zhang, J.; Yan, W. Plasmon-Enhanced Antibacterial Activity of Chiral Gold Nanoparticles and In Vivo Therapeutic Effect. Nanomaterials. 2021, 11, 1621. DOI: 10.3390/nano11061621.
  • Sandland, J.; Savoie, H.; Boyle, R. W.; Murray, B. S. RAPTA-Decorated Polyacrylamide Nanoparticles: Exploring Their Synthesis, Physical Properties and Effect on Cell Viability. Chembiochem. 2021, 22, 931–936. DOI: 10.1002/cbic.202000704.
  • Shi, C.; Xing, Y.; Patil, A.; Meng, Z.; Yu, R.; Lin, N.; Qiu, W.; Hu, F.; Liu, X. Y. Primary and Secondary Mesoscopic Hybrid Materials of Au Nanoparticles@Silk Fibroin and Applications. ACS Appl. Mater. Interfaces. 2019, 11, 30125–30136. DOI: 10.1021/acsami.9b07846.
  • Wu, J.; Cao, L.; Liu, Y.; Zheng, A.; Jiao, D.; Zeng, D.; Wang, X.; Kaplan, D. L.; Jiang, X. Functionalization of Silk Fibroin Electrospun Scaffolds via BMSC Affinity Peptide Grafting through Oxidative Self-Polymerization of Dopamine for Bone Regeneration. ACS Appl. Mater. Interfaces. 2019, 11, 8878–8895. DOI: 10.1021/acsami.8b22123.
  • Hao, D.; Baoqi, Z. Effect of Sodium Carbonate Concentrations on the Degumming and Regeneration Process of Silk Fibroin. J. Text. Inst. 2014, 106, 311–319. DOI: 10.1080/00405000.2014.919065.
  • Linsley, C. S.; Wu, B. M. Recent Advances in Light-Responsive on-Demand Drug-Delivery Systems. Ther. Deliv. 2017, 8, 89–107. DOI: 10.4155/tde-2016-0060.
  • Moses, B.; You, Y. Emerging Strategies for Controlling Drug Release by Using Visible/Near IR Light. Med. Chem. 2013, 03, 192–198. DOI: 10.4172/2161-0444.1000138.
  • Singh, P.; Pandit, S.; Mokkapati, V. R. S. S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer. Int. J. Mol. Sci. 2018, 19, 1979. DOI: 10.3390/ijms19071979.
  • Peng, J.; Liang, X.; Calderon, L. Progress in Research on Gold Nanoparticles in Cancer Management. Medicine. 2019, 98, e15311. DOI: 10.1097/MD.0000000000015311.
  • Guo, J.; Rahme, K.; He, Y.; Li, L.-L.; Holmes, J. D.; O'Driscoll, C. M. Gold Nanoparticles Enlighten the Future of Cancer Theranostics. Int. J. Nanomedicine. 2017, 12, 6131–6152. DOI: 10.2147/IJN.S140772.
  • Zhao, J.; Zhang, L.; Qi, Y.; Liao, K.; Wang, Z.; Wen, M.; Zhou, D. NiR Laser Responsive Nanoparticles for Ovarian Cancer Targeted Combination Therapy with Dual-Modal Imaging Guidance. Int. J. Nanomedicine. 2021, 16, 4351–4369. DOI: 10.2147/IJN.S299376.
  • Liang, J.-J.; Zhou, Y.-Y.; Wu, J.; Ding, Y. Gold Nanoparticle-Based Drug Delivery Platform for Antineoplastic Chemotherapy. Curr. Drug Metab. 2014, 15, 620–631. DOI: 10.2174/1389200215666140605131427.
  • Lee, C.; Kim, T. W.; Oh, D. E.; Bae, S. O.; Ryu, J.; Kong, H.; Jeon, H.; Seo, H. K.; Jeon, S.; Kim, T. H. In Vivo and In Vitro Anticancer Activity of Doxorubicin-Loaded DNA-AuNP Nanocarrier for the Ovarian Cancer Treatment. Cancers. 2020, 12, 1–14. DOI: 10.3390/cancers12030634.
  • Fu, J. j.; Li, C. w.; Liu, Y.; Chen, M. y.; Zhang, Q.; Yu, X. y.; Wu, B.; Li, J. x.; Du, L. r.; Dang, Y. y.; et al. The Microneedles Carrying Cisplatin and IR820 to Perform Synergistic Chemo-Photodynamic Therapy against Breast Cancer. J. Nanobiotechnology. 2020, 18, 146. DOI: 10.1186/s12951-020-00697-0.
  • Bai, D. P.; Zhang, X. F.; Zhang, G. L.; Huang, Y. F.; Gurunathan, S. Zinc Oxide Nanoparticles Induce Apoptosis and Autophagy in Human Ovarian Cancer Cells. Int. J. Nanomedicine. 2017, 12, 6521–6535. DOI: 10.2147/IJN.S140071.
  • Li, C.; Li, H.; Guo, J.; Li, L.; Xi, X.; Yu, Y. Biocompatible Supramolecular Pseudorotaxane Hydrogels for Controllable Release of Doxorubicin in Ovarian Cancer SKOV-3 Cells. RSC Adv. 2019, 10, 689–697. DOI: 10.1039/c9ra08986a.
  • Yuan, Y.-G.; Peng, Q.-L.; Gurunathan, S. Silver Nanoparticles Enhance the Apoptotic Potential of Gemcitabine in Human Ovarian Cancer Cells: Combination Therapy for Effective Cancer Treatment. Int. J. Nanomedicine. 2017, 12, 6487–6502. DOI: 10.2147/IJN.S135482.
  • Yaghoubi, A.; Ghojazadeh, M.; Abolhasani, S.; Alikhah, H.; Khaki-Khatibi, F. Correlation of Serum Levels of Vitronectin, Malondialdehyde and Hs-CRP With Disease Severity in Coronary Artery Disease. J. Cardiovasc. Thorac. Res. 2015, 7, 113–117. DOI: 10.15171/jcvtr.2015.24.
  • K. Rishi, A.; Zhang, X.; Wali, A. Recent Advances and Approaches in Targeting Apoptosis Signaling Pathways for Anti-Cancer Therapeutics. CCTR. 2010, 6, 262–282. DOI: 10.2174/157339410793358075.
  • Carneiro, B. A.; El-Deiry, W. S. Targeting Apoptosis in Cancer Therapy. Nat. Rev. Clin. Oncol. 2020, 17, 395–417. DOI: 10.1038/s41571-020-0341-y.
  • Haume, K.; Rosa, S.; Grellet, S.; Śmiałek, M. A.; Butterworth, K. T.; Solov’yov, A. V.; Prise, K. M.; Golding, J.; Mason, N. J. Gold Nanoparticles for Cancer Radiotherapy: A Review. Cancer Nanotechnol. 2016, 7, 8. DOI: 10.1186/s12645-016-0021-x.
  • Rastinehad, A. R.; Anastos, H.; Wajswol, E.; Winoker, J. S.; Sfakianos, J. P.; Doppalapudi, S. K.; Carrick, M. R.; Knauer, C. J.; Taouli, B.; Lewis, S. C.; et al. Gold Nanoshell-Localized Photothermal Ablation of Prostate Tumors in a Clinical Pilot Device Study. Proc. Natl. Acad. Sci. USA. 2019, 116, 18590–18596. DOI: 10.1073/pnas.1906929116.
  • Lim, Z. Z. J.; Li, J. E. J.; Ng, C. T.; Yung, L. Y. L.; Bay, B. H. Gold Nanoparticles in Cancer Therapy. Acta Pharmacol. Sin. 2011, 32, 983–990. DOI: 10.1038/aps.2011.82.
  • Liu, Y.; Crawford, B. M.; Vo-Dinh, T. Gold Nanoparticles-Mediated Photothermal Therapy and Immunotherapy. Immunotherapy. 2018, 10, 1175–1188. DOI: 10.2217/imt-2018-0029.
  • Jain, S.; Hirst, D. G.; O'Sullivan, J. M. Gold Nanoparticles as Novel Agents for Cancer Therapy. Br. J. Radiol. 2012, 85, 101–113. DOI: 10.1259/bjr/59448833.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.