0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Rheological Behavior of Drilling Muds and Developing a Rheological Model

Received 10 Jul 2024, Accepted 26 Jul 2024, Published online: 05 Aug 2024

References

  • Wang, Z.; Xu, Y.; Khan, N.; Zhu, C.; Gao, Y. Effects of the Surfactant, Polymer, and Crude Oil Properties on the Formation and Stabilization of Oil Based Foam Liquid Films: Insights from the Microscale. J. Mol. Liq. 2023, 373, 121194. DOI: 10.1016/j.molliq.2022.121194.
  • Ash, S. G.; Clarke-Sturman, A. J.; Calvert, R.; Nisbet, T. M. Chemical Stability of Biopolymers Solutions. SPE 12085, Presented at the 58th Annual Technical Conference and Exhibition, San Francisco, CA, USA, October 5–8, 1983.
  • Cerico, C. R.; Bagshaw, F. R. Description and Use of Polymers Used in Drilling, Workover, and Completions. Paper SPE 7747 Presented at the SPE/AIME Production Technology Symposium, Hobbs, NM, USA, October 30–31, 1978.
  • Kelessidis, V. C.; Maglione, R.; Tsamantaki, C.; Aspirtakis, Y. Optimal Determination of Rheological Parameters for Herschel–Bulkley Drilling Fluids and Impact on Pressure Drop, Velocity Profiles and Penetration Rates during Drilling. J. Petrol. Sci. Eng. 2006, 53, 203–224. DOI: 10.1016/j.petrol.2006.06.004.
  • Mark, O. Statistical Characterization of Performance of Biopolymer Drill-In Fluid for Different Rheological Models. Master Thesis, Faculty of the African University of Science and Technology, Abuja, Nigeria, 2010; pp 1–61.
  • Salyzhyn, Y.; Myslyuk, M. Studies of the Rheological Properties of Drilling Fluids. Ann. Trans. Nordic Rheol. Soc. 2011, 19, 61–67.
  • Nasiri, M.; Ashrafizadeh, S. N. Novel Equation for the Prediction of Rheological Parameters of Drilling Fluids in an Annulus. Ind. Eng. Chem. Res. 2010, 49, 3374–3385. DOI: 10.1021/ie9009233.
  • Arabloo, M.; Shahri, M. P. Experimental Studies on Stability and Viscoplastic Modeling of Colloidal Gas Aphron (CGA) Based Drilling Fluids. J. Petrol. Sci. Eng. 2014, 113, 8–22. DOI: 10.1016/j.petrol.2013.12.002.
  • Ziaee, H.; Arabloo, M.; Ghazanfari, M. H.; Rashtchian, D. Herschel–Bulkley Rheological Parameters of Lightweight Colloidal Gas Aphron (CGA) Based Fluids. Chem. Eng. Res. Des. 2015, 93, 21–29. DOI: 10.1016/j.cherd.2014.03.023.
  • Tehrani, A. Thixotropy in Water-Based Drilling Fluids. Ann. Trans. Nordic Rheol. Soc. 2008, 16, 1–13.
  • Werner, B.; Lund, B.; Myrseth, V.; Saasen, A.; Gyland, K. R.; Ibragimova, Z. Comparison of Rheological Properties of Oil Based and KCl Drilling Fluids. Paper SPE 180063 MS Presented at the SPE Bergen One Day Seminar, Bergen, Norway, April 20, 2016. DOI: 10.2118/180063-MS.
  • Andaverde, J. A.; Wong-Loya, J. A.; Vargas-Tabares, Y.; Robles, M. A Practical Method for Determining the Rheology of Drilling Fluid. J. Petrol. Sci. Eng. 2019, 180, 150–158. DOI: 10.1016/j.petrol.2019.05.039.
  • Barnes, H. A. Thixotropy-A Review. J. Non-Newt. Fluid Mech. 1997, 70, 1–33. DOI: 10.1016/S0377-0257(97)00004-9.
  • Deng, S.; Kang, C.; Bayat, A.; Kuru, E.; Osbak, M.; Barr, K.; Trovato, C. Rheological Properties of Clay-Based Drilling Fluids and Evaluation of Their Hole-Cleaning Performances in Horizontal Directional Drilling. J. Pipeline Syst. Eng. Pract. 2020, 11. DOI: 10.1061/(ASCE)PS.1949-1204.0000475.
  • Bayat, A. E.; Moghanloo, P. J.; Piroozian, A.; Rafati, R. Experimental Investigation of Rheological and Filtration Properties of Water Based Drilling Fluids in Presence of Various Nano-Particles. Col. Surf. A 2018, 555, 256–263. DOI: 10.1016/j.colsurfa.2018.07.001.
  • Kelessidis, V. C.; Maglione, R. Modeling Rheological Behavior of Bentonite Suspensions as Casson and Robertson-Stiff Fluids Using Newtonian and True Shear Rates in Couette Viscometry. Powder Tech. 2006, 168, 134–147. DOI: 10.1016/j.powtec.2006.07.011.
  • Huang, Y.; Zheng, W.; Zhang, D.; Xi, Y. A Modified Herschel–Bulkley Model for Rheological Properties with Temperature Response Characteristics of Poly-Sulfonated Drilling Fluid. Energy Sour. Part A 2020, 42, 1464–1475. DOI: 10.1080/15567036.2019.1604861.
  • Agwu, O. E.; Akpabio, J. U.; Ekpenyong, M. E.; Inyang, U. G.; Asuquo, D. E.; Eyoh, I. J.; Adeoye, O. S. A Critical Review of Drilling Mud Rheological Models. J. Petrol. Sci. Eng. 2021, 203, 108659. DOI: 10.1016/j.petrol.2021.108659.
  • Akpan, E. U.; Enyi, G. C.; Nasr, G. Enhancing the Performance of Xanthan Gum in Water-Based Mud Systems Using an Environmentally Friendly Biopolymer. J. Petrol. Explor. Prod. Technol. 2020, 10, 1933–1948. DOI: 10.1007/s13202-020-00837-0.
  • Du, H.; Wang, G.; Deng, G.; Cao, C. Modelling the Effect of Mudstone Cuttings on Rheological Properties of KCl/Polymer Water-Based Drilling Fluid. J. Petrol. Sci. Eng. 2018, 170, 422–429. DOI: 10.1016/j.petrol.2018.06.071.
  • Mercer, H. A.; Weymann, H. D. Structure of Thixotropic Suspensions in Shear Flow. III. Time-Dependent Behavior. Trans. Soc. Rheol. 1974, 18, 199–218. DOI: 10.1122/1.549356.
  • Dolz, M.; Jiménez, J.; Hernández, M. J.; Delegido, J.; Casanovas, A. Flow and Thixotropy of Non-contaminating Oil Drilling Fluids Formulated with Bentonite and Sodium Carboxymethyl Cellulose. J. Petrol. Sci. Eng. 2007, 57, 294–302. DOI: 10.1016/j.petrol.2006.10.008.
  • Pivnicka, S.; Nguyen, T. C.; Al-Safran, E.; Saasen, A. Pressure Gradient Prediction of Time-Dependent Drilling Fluids and the Effect of Acceleration. J. Petrol. Sci. Eng. 2015, 135, 246–252. DOI: 10.1016/j.petrol.2015.09.008.
  • Zhong, H.; He, Y.; Yang, E.; Bi, Y.; Yang, T. Modeling of Microflow during Viscoelastic Polymer Flooding in Heterogeneous Reservoirs of Daqing Oilfield. J. Petrol. Sci. Eng. 2022, 210, 110091. DOI: 10.1016/j.petrol.2021.110091.
  • Maxey, J. Thixotropy and Yield Stress Behavior in Drilling Fluids. Paper AADE-07-NTCE-37 Presented at the 2007 AADE National Technical Conference and Exhibition Held at the Wyndam Greenspoint Hotel, Houston, TX, USA, April 10–12, 2007.
  • Jachnik, R. Drilling Fluid Thixotropy and Relevance. Ann. Trans. Nordic Rheol. Soc. 2005, 13, 1–6.
  • Zamora, M.; Growcock, F. The Top 10 Myths, Misconceptions and Mysteries in Rheology and Hydraulics. Paper AADE-10-DF-HO-40 Presented at the 2010 AADE Fluids Conference and Exhibition Held at the Hilton Houston North, Houston TX, USA, April 6–7, 2010.
  • Larson, R. G.; Wei, Y. A Review of Thixotropy and Its Rheological Modelling. J. Rheol. 2019, 63, 477–501. DOI: 10.1122/1.5055031.
  • Livescu, S. Mathematical Modeling of Thixotropic Drilling Mud and Crude Oil Flow in Wells and Pipelines—A Review. J. Petrol. Sci. Eng. 2012, 98–99, 174–184. DOI: 10.1016/j.petrol.2012.04.026.
  • Bui, B.; Saasen, A.; Maxey, J.; Ozbayoglu, M. E.; Miska, S. Z.; Yu, M.; Takach, N. E. Viscoelastic Properties of Oil-Based Drilling Fluids. Ann. Trans. Nordic Rheol. Soc. 2012, 20, 33–47.
  • Altindal, M. C.; Ozbayoglu, E.; Miska, S.; Yu, M.; Takach, N. Impact of Viscoelastic Characteristics of Oil Based Muds/Synthetic Based Muds on Cuttings Settling Velocities. Paper OMAE2017-62129 Presented at the 36th International Conference on Ocean, Offshore and Arctic Engineering, Trondheim, Norway, June 25–30, 2017. DOI: 10.1115/OMAE2017-62129.
  • Baldino, S.; Osgouei, R. E.; Ozbayoglu, E.; Miska, S. Z.; May, R. Quemada Model Approach to Oil or Synthetic Oil Based Drilling Fluids Rheological Modelling. J. Petrol. Sci. Eng. 2018, 163, 27–36. DOI: 10.1016/j.petrol.2017.12.042.
  • Baker Hughes INTEQ. Drilling Engineering Workbook; Houston, TX, 1995; pp 212–251; Baker Hughes INTEQ. Drilling Fluids Reference Manual; Houston, TX, 2006; pp 770–780.
  • Bird, B.; Curtiss, C. F.; Armstrong, R. C.; Hassager, O. Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics; John Wiley & Sons Inc.: New York, NY, 1987.
  • Lauzon, R. V.; Reid, K. I. G. New Rheological Model Offers Field Alternative. Oil Gas J. 1979, 5, 51–57.
  • Cheng, D. C.-H.; Evans, F. Phenomenological Characterization of the Rheological Behavior of Inelastic Reversible Thixotropic and Anti-Thixotropic Fluids. Br. J. Appl. Phys. 1965, 16, 1599–1617. DOI: 10.1088/0508-3443/16/11/301.
  • Quemada, D. Rheological Modelling of Complex Fluids. I. The Concept of Effective Volume Fraction Revisited. Eur. Phys. J. Appl. 1998, 1, 119–127. DOI: 10.1051/epjap:1998125.
  • Bui, B.; Tutuncu, A. A Generalized Rheological Model for Drilling Fluids Using Cubic Splines. Paper Presented at the SPE Western North American and Rocky Mountain Joint Meeting, Denver, CO, USA, April, 2014. DOI: 10.2118/169527-MS.
  • Guo, B.; Liu, G. Applied Drilling Circulation Systems: Hydraulics, Calculations and Models; Elsevier: Oxford, 2011. DOI: 10.1016/C2009-0-30657-1.
  • Adewale, F. J.; Lucky, A. P.; Oluwabunmi, A. P.; Boluwaji, E. F. Selecting the Most Appropriate Model for Rheological Characterization of Synthetic Based Drilling Mud. Int. J. Appl. Eng. Res. 2017, 12, 7614–7629.
  • Cayeux, E.; Leulseged, A. The Effect of Thixotropy on Pressure Losses in a Pipe. Energies 2020, 13, 6165. DOI: 10.3390/en13236165.
  • Archontoulis, S. V.; Miguez, F. E. Non-Linear Regression Models and Applications in Agricultural Research. Agron. J. 2015, 107, 786–798. DOI: 10.2134/agronj2012.0506.
  • Makinde, F. A.; Adejumo, A. D.; Ako, C. T.; Efeovbokhan, V. E. Modelling the Effects of Temperature and Aging Time on the Rheological Properties of Drilling Fluids. Petrol. Coal 2011, 53, 167–182. www.vurup.sk/petroleum-coal.
  • Oliveira, R. C. T. Long-Range Description of Rheological Properties of a High Pressure High-Temperature Oil-Based Drilling Fluid. Master’s Thesis. Office of Graduate and Professional Studies of Texas A&M University, 2016.
  • Igwilo, K. C.; Godspower, I.; Nnanna, O.; Osueke, G. O.; Jude, O.; Anawe, P. A. L. Modeling the Effects of Temperature on Oil Base Mud Viscosity Using Polynomial Equation. Int. J. Petrol. Petrochem. Eng. 2017, 3, 16–22.
  • Hunt, B. R.; Lipsman, R. L.; Rosenberg, J. M. Guide to MATLAB, 3rd ed. For Beginners and Experienced Users; Cambridge University Press, 2014.
  • Zamora, M.; Power, D. Making a Case for AADE Hydraulics and the Unified Rheological Model. Paper AADE-02DFWM-HO-13 Presented at the AADE 2002 Technology Conference, Drilling & Completion Fluids and Waste Management, Held at the Radisson Astrodome, Houston, TX, USA, April 2–3, 2002.
  • Mezger, T. The Rheology Handbook, 5th ed.; Vincentz Network GmbH & Co. KG, Plathnerstr: Hannover, 2020. DOI: 10.1515/9783748603702.
  • Saasen, A.; Ytrehus, J. D. Viscosity Models for Drilling Fluids—Herschel-Bulkley Parameters and Their Use. Energies 2020, 13, 5271. DOI: 10.3390/en13205271.
  • Halvorsen, H.; Blikra, H. J.; Grelland, S. S.; Saasen, A.; Khalifeh, M. Viscosity of Oil-Based Drilling Fluids. Ann. Trans. Nord. Rheol. Soc. 2019, 27, 77–85.
  • Ofei, T. N.; Lund, B.; Gyland, K. R.; Saasen, A. Effect of Barite on the Rheological Properties of an Oil-Based Drilling Fluid. Ann. Trans. Nord. Rheol. Soc. 2020, 28, 81–90.
  • Lee, J. S.; Song, K. W. Time-Dependent Rheological Behavior of Natural Polysaccharide Xanthan Gum Solutions in Interrupted Shear and Step-Incremental/Reductional Shear Flow Fields. Korea-Aust. Rheol. J. 2015, 27, 297–307. DOI: 10.1007/s13367-015-0029-5.
  • Thurston, G. B.; Pope, G. A. Shear Rate Dependence of the Viscoelasticity of Polymer Solutions: II. Xanthan Gum. J. Non-Newt. Fluid Mech. 1981, 9, 69–78. DOI: 10.1016/0377-0257(87)87007-6.
  • Bahrani, S. A.; Loisel, C.; Doublier, J. L.; Rezzoug, S. A.; Maache-Rezzoug, Z. Role of Vacuum Steps Added before and after Steaming Treatment of Maize Starch. Impact on Pasting Morphological and Rheological Properties. Carbohydr. Polym. 2012, 89, 810–820. DOI: 10.1016/j.carbpol.2012.04.015.
  • Maache-Rezzoug, Z.; Zarguili, I.; Loisel, C. J.; Doublier, L.; Buléon, A. A. Investigation on Structural and Physicochemical Modifications of Standard Maize, Waxy Maize, Wheat and Potato Starches after DIC Treatment. Carbohyd. Polym. 2011, 86, 328–336. DOI: 10.1016/j.carbpol.2011.04.058.
  • Nayouf, M.; Loisel, C.; Doublier, J. L. Effect of Thermomechanical Treatment on the Rheological Properties of Cross-Linked Waxy Corn Starch. J. Food Eng. 2003, 59, 209–219. DOI: 10.1016/S0260-8774(02)00460-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.