728
Views
21
CrossRef citations to date
0
Altmetric
Research Articles

Error Feedback Frequency Affects Automaticity But Not Accuracy and Consistency After Extensive Motor Skill Practice

ORCID Icon, &
Pages 144-154 | Received 02 Apr 2015, Accepted 29 Mar 2017, Published online: 23 Jun 2017

REFERENCES

  • Abernethy, B. (2001). Attention. In R. N. Singer, H. A. Hausenblas, & C. M. Janelle (Eds), Handbook of sport psychology (pp. 53–85). New York, NY: Wiley.
  • Abdoli, B., Farsi, A., & Barani, F. (2012). Comparing the effects of errorless and errorful and fixed practices on learning of throwing task. European Journal of Experimental Biology, 2, 1800–1806.
  • Adams, A. J. (1971). A closed-loop theory of motor learning. Journal of Motor Behavior, 3, 111–150. doi:10.1080/00222895.1971.10734898
  • Agethen, M., & Krause, D. (2012). Reduced dual task interference in multiple repeated dual-task tests: Automatization or task integration?. In G. Juras & K. Slomka (Eds.), Current research in motor control IV - From theory to implementation (pp. 8–14). Katowice, Poland: AWF Katowice.
  • Agethen, M., & Krause, D. (2016). Effects of bandwidth feedback on the automatization of an arm movement sequence. Human Movement Science, 45, 71–83. doi:10.1016/j.humov.2015.11.005
  • Albuquerque, M. R., Ugrinowitsch, H., Lage, G. M., Corrêa, U. C., & Benda, R. N. (2014). Effects of knowledge of results frequency on the learning of generalized motor programs and parameters under conditions of constant. Perceptual and Motor Skills, 119, 69–81. doi:10.2466/23.22.PMS.119c15z0
  • Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Reviews of Psychology, 63, 1–29. doi:10.1146/annurev-psych-120710-100422
  • Blischke, K. (2000). Two procedures, one mechanism? Recent findings on the automation of voluntary movements. Journal of Human Kinetics, 4, 3–16.
  • Botvinick, M. M. (2007). Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. Cognitive, Affective, & Behavioral Neuroscience, 7, 356–366. doi:10.3758/CABN.7.4.356
  • Büsch, D., Hagemann, N., & Bender, N. (2010). The dimensionality of the Edinburgh handedness inventory: An analysis with models of the item response theory. Laterality, 15, 610–28. doi:10.1080/13576500903081806
  • Capio, C. M., Poolton, J. M., Sit, C. H. P., Eguia, K. F., & Masters, R. S. W. (2013). Reduction of errors during practice facilitates fundamental movement skill learning in children with intellectual disabilities. Journal of Intellectual Disability Research, 57, 295–305. doi:10.1111/j.1365-2788.2012.01535.x
  • Capio, C. M., Poolton, J. M., Sit, C. H. P., Holmstrom, M., & Masters, R. S. W. (2013). Reducing errors benefits the field-based learning of a fundamental movement skill in children. Scandinavian Journal of Medicine & Science in Sports, 23, 181–188. doi:10.1111/j.1600-0838.2011.01368.x
  • Chauvel, G., Maquestiaux, F., Ruthruff, E., Didierjean, A., & Hartley, A. A. (2013). Novice motor performance: Better not to verbalize. Psychonomic Bulletin & Review, 20, 177–183. doi:10.3758/s13423-012-0331-x
  • Chein, J. M., & Schneider, W. (2012). The brain's learning and control architecture. Current Directions in Psychological Science, 21, 78–84. doi:10.1177/0963721411434977
  • Donovan, J. J., & Radosevich, D. J. (1999). A meta-analytic review of the distribution of practice effect: Now you see it, now you don't. Journal of Applied Psychology, 84, 795–805. doi:10.1037/0021-9010.84.5.795
  • Doyon, J., Bellec, P., Amsel, R., Penhune, V., Monchi, O., Carrier, J., Lehéricy, S., & Benali, H. (2009). Contributions of the basal ganglia and functionally related structures to motor learning. Behavioral Brain Research, 199, 61–75. doi:10.1016/j.bbr.2008.11.012
  • Fitts, P. M., & Posner, M. I. (1967). Human performance. Belmont, NY: Brooks/Cole.
  • Gentile, A. M. (1972). A working model of skill acquisition with application to teaching. Quest, 17, 3–23. doi:10.1080/00336297.1972.10519717
  • Goh, H. T., Kantak, S. S., & Sullivan, K. J. (2012). Movement pattern and parameter learning in children: Effects of feedback frequency. Research Quarterly for Exercise and Sport, 83, 346–352. doi:10.5641/027013612800745103
  • Hikosaka, O., & Isoda, M. (2010). Switching from automatic to controlled behavior: Cortico-basal ganglia mechanisms. Trends in Cognitive Sciences, 14, 154–161. doi:10.1016/j.tics.2010.01.006
  • Hikosaka, O., Nakahara, H., Rand, M. K., Sakai, K., Lu, X., Nakamura, K., & Doya, K. (1999). Parallel neural networks for learning sequential procedures. Trends in Neurosciences, 22, 464–471. doi:10.1016/S0166-2236(99)01439-3
  • Ho, L., & Shea, J. (1978). Effects of relative frequency of knowledge of results on retention of a motor skill. Perceptual and Motor Skills, 46, 859–866. doi:10.2466/pms.1978.46.3.859
  • Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679–709. doi:10.1037//0033-295X.109.4.679
  • Keele, S. W., Ivry, R., Mayr, U., Hazeltine, E., & Heuer, H. (2003). The cognitive and neural architecture of sequence representation. Psychological Review, 110, 316–339. doi:10.1037/0033-295X.110.2.316
  • Keller, M., Lauber, B., Gehring, D., Leukel, C., & Taube, W. (2014). Jump performance and augmented feedback: Immediate benefits and long-term training effects. Human Movement Science, 36, 177–189. doi:10.1016/j.humov.2014.04.007
  • Lai, Q., & Shea, C. H. (1999). Bandwidth knowledge of results enhances generalized motor program learning. Research Quarterly for Exercise and Sport, 70, 79–83. doi:10.1080/02701367.1999.10607734.
  • Lai, Q., Shea, C. H., Wulf, G., & Wright, D. L. (2000). Optimizing generalized motor program and parameter learning. Research Quarterly for Exercise and Sport, 71, 10–24. doi:10.1080/02701367.2000.10608876
  • Lewthwaite, R., & Wulf, G. (2010). Social-comparative feedback affects motor skill learning. The Quarterly Journal of Experimental Psychology, 63, 738–749. doi:10.1080/17470210903111839
  • Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492–527. doi:10.1037//0033-295X.95.4.492
  • Lohse, K. R, Wadden, K., Boyd, L. A., & Hodges, N. J. (2014). Motor skill acquisition across short and long time scales: A meta-analysis of neuroimaging data. Neuropsychologia, 59, 130–141. doi:10.1016/j.neuropsychologia.2014.05.001
  • Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17, 347–356. doi:10.1038/nn.3655
  • Manzey D. (1988). Determinanten der Aufgabeninterferenz bei Doppeltätigkeiten und ressourcentheoretische Modellvorstellungen in der Kognitiven Psychologie [Determinants of task interference in dual‐task activities and resource‐theoretical model conceptions in cognitive psychology]. Cologne, Germany: Deutsche Forschungs‐ und Versuchsanstalt für Luft‐ und Raumfahrt.
  • Marschall, F., Bund, A., & Wiemeyer, J. (2007). Does frequent augmented feedback really degrade learning? A meta-analysis. E-Journal Bewegung und Training, 1, 74–85.
  • Masters, R. S. W., & Maxwell, J. P. (2004). Implicit motor learning, reinvestment and movement disruption: What you don't know won't hurt you. In A. M. Williams & N. J. Hodges (Eds.), Skill acquisition in sport: Research, theory and practice (pp. 207–228). London, UK: Routledge.
  • Masters, R. S. W., Poolton, J. M., & Maxwell, J. P. (2008). Stable implicit motor processes despite aerobic locomotor fatigue. Consciousness and Cognition, 17, 335–338. doi:10.1016/j.concog.2007.03.009
  • Mononen, K. (2007). The effects of augmented feedback on motor skill learning in shooting. Jyväskylä, Finland: Jyväskylä University Printing House.
  • Nicholson, D. E., & Schmidt, R. A. (1991). Scheduling information feedback to enhance training effectiveness. Proceedings of the Human Factors Society, 35, 1400–1402. doi:10.1177/154193129103501913
  • Poolton, J. M., & Masters, R. S. W. (2005). The relationship between initial errorless learning conditions and subsequent performance. Human Movement Science, 24, 362–378. doi:10.1016/j.humov.2005.06.006
  • Ranganathan, R., & Newell, K. M. (2009). Influence of augmented feedback on coordination strategies. Journal of Motor Behavior, 41, 317–330. doi:10.3200/JMBR.41.4.317-330
  • Ruthruff, E., Van Slest, M., Johnston, J. C., & Remington, R. (2006). How does practice reduce dual-task interference: Integration, automatization, or just stage shortening?. Psychological Research, 70, 125–142. doi:10.1007/s00426-004-0192-7
  • Salmoni, A. W., Schmidt, R. A., & Walter, S. B. (1984). Knowledge of results and motor learning: A review and critical reappraisal. Psychological Bulletin & Review, 95, 355–386.
  • Schmidt, R. A., Young, D. E., Swinnen, S., & Shapiro, D. (1989). Summary knowledge of results for skill acquisition: Support for the guidance hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 352–359. doi:10.1037//0278-7393.15.2.352
  • Schmidt, R. A., & Lee, T. D. (2005). Motor control and learning: A behavioral emphasis (4th ed.). Champaign, IL: Human Kinetics.
  • Seidler, R. D., Kwak, Y., Fling, B. W., & Bernard, J. A. (2013). Neurocognitive mechanisms of error-based motor learning. In M. J. Richardson, M. A. Riley, & K. Shockley (Eds.), Advances in experimental medicine and biology. Progress in motor control (pp. 39–60). New York, NY: Springer. doi:10.1007/978-1-4614-5465-6_3
  • Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending, and a general theory. Psychological Review, 84, 127–190.
  • Sparrow, W., & Summers, J. (1992). Performance on trials without knowledge of results in reduced relative frequency presentations of KR. Journal of Motor Behavior, 24, 197–209. doi:10.1080/00222895.1992.9941615
  • Winstein, C. J., & Schmidt, R. A. (1990). Reduced feedback of knowledge of results enhances motor skill learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 677–691.
  • Wulf, G. (2013). Attentional focus and motor learning: A review of 15 years. International Review of Sport and Exercise Psychology, 6, 77–104. doi:10.1080/1750984X.2012.723728
  • Wulf, G., & Schmidt, R. A. (1989). The learning of generalized motor programs: Reducing the relative frequency of knowledge of results enhances memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 748–757. doi:10.1037//0278-7393.15.4.748
  • Wulf, G., Schmidt, R. A., & Deubel, H. (1993). Reduced feedback frequency enhances generalized motor program learning but not parameterization learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 1134–1150. doi:10.1037//0278-7393.19.5.1134

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.