357
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Sensorimotor Impairment of Speech and Hand Movement Timing Processing in Parkinson’s Disease

ORCID Icon & ORCID Icon
Pages 561-571 | Received 17 Apr 2018, Accepted 17 Sep 2018, Published online: 29 Oct 2018

REFERENCES

  • Alexander, G. E. (2004). Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues in Clinical Neuroscience, 6, 259–280.
  • Artieda, J., Pastor, M. A., Lacruz, F., & Obeso, J. A. (1992). Temporal discrimination is abnormal in Parkinson's disease. Brain, 115(1), 199–210.
  • Behroozmand, R., Sangtian, S., Korzyukov, O., & Larson, C. R. (2016). A temporal predictive code for voice motor control: Evidence from ERP and behavioral responses to pitch-shifted auditory feedback. Brain Res, 1636, 1–12. doi:10.1016/j.brainres.2016.01.040
  • Berchicci, M., Lucci, G., Spinelli, D., & Di Russo, F. (2015). Stimulus onset predictability modulates proactive action control in a Go/No-go task. Frontiers in Behavioral Neuroscience, 9, 101.
  • Beste, C., Dziobek, I., Hielscher, H., Willemssen, R., & Falkenstein, M. (2009). Effects of stimulus–response compatibility on inhibitory processes in Parkinson’s disease. European Journal of Neuroscience, 29(4), 855–860.
  • Bevan, W., Hardesty, D. L., & Avant, L. L. (1965). Response latency with constant and variable interval schedules. Perceptual and Motor Skills, 20(3), 969–972.
  • Binkofski, F., & Buccino, G. (2004). Motor functions of the Broca’s region. Brain and Language, 89(2), 362–369.
  • Bloxham, C. A., Mindel, T. A., & Frith, C. D. (1984). Initiation and execution of predictable and unpredictable movements in Parkinson's disease. Brain, 107 (2), 371–384.
  • Coull, J. T., Vidal, F., Nazarian, B., & Macar, F. (2004). Functional anatomy of the attentional modulation of time estimation. Science (New York, N.Y.), 303(5663), 1506–1508.
  • Dexter, D. T., & Jenner, P. (2013). Parkinson disease: from pathology to molecular disease mechanisms. Free Radical Biology and Medicine, 62, 132–144. doi:10.1016/j.freeradbiomed.2013.01.018
  • Dhamala, M., Pagnoni, G., Wiesenfeld, K., Zink, C. F., Martin, M., & Berns, G. S. (2003). Neural correlates of the complexity of rhythmic finger tapping. NeuroImage, 20(2), 918–926.
  • Dubois, B., Slachevsky, A., Litvan, I., & Pillon, B. (2000). The FAB: A frontal assessment battery at bedside. Neurology, 55(11), 1621–1626.
  • Ferrandez, A.-M., Hugueville, L., Lehéricy, S., Poline, J.-B., Marsault, C., & Pouthas, V. (2003). Basal ganglia and supplementary motor area subtend duration perception: An fMRI study. Neuroimage, 19(4), 1532–1544.
  • Folstein, M. F., Robins, L. N., & Helzer, J. E. (1983). The mini-mental state examination. Archives of General Psychiatry, 40(7), 812
  • Freeman, J., Cody, F., & Schady, W. (1993). The influence of external timing cues upon the rhythm of voluntary movements in Parkinson's disease. Journal of Neurology, Neurosurgery & Psychiatry, 56(10), 1078–1084.
  • Gauggel, S., Rieger, M., & Feghoff, T. A. (2004). Inhibition of ongoing responses in patients with Parkinson's disease. Journal of Neurology, Neurosurgery & Psychiatry, 75(4), 539–544.
  • Gentilucci, M., & Volta, R. D. (2008). Spoken language and arm gestures are controlled by the same motor control system. The Quarterly Journal of Experimental Psychology, 61(6), 944–957.
  • Goetz, C. G., Tilley, B. C., Shaftman, S. R., Stebbins, G. T., Fahn, S., Martinez-Martin, P., … LaPelle, N. (2008). Movement Disorder Society‐sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS‐UPDRS): Scale presentation and clinimetric testing results. Movement Disorders, 23(15), 2129–2170.
  • Gräber, S., Hertrich, I., Daum, I., Spieker, S., & Ackermann, H. (2002). Speech perception deficits in Parkinson’s disease: Underestimation of time intervals compromises identification of durational phonetic contrasts. Brain and Language, 82(1), 65–74.
  • Grafton, S. T. (2004). Contributions of functional imaging to understanding parkinsonian symptoms. Current Opinion in Neurobiology, 14(6), 715–719.
  • Grahn, J. A., & Brett, M. (2009). Impairment of beat-based rhythm discrimination in Parkinson’s disease. Cortex: A Journal Devoted to the Study of the Nervous System and Behavior, 45(1), 54–61.
  • Gulberti, A., Moll, C. K. E., Hamel, W., Buhmann, C., Koeppen, J. A., Boelmans, K., … Engel, A. K. (2015). Predictive timing functions of cortical beta oscillations are impaired in Parkinson’s disease and influenced by L-DOPA and deep brain stimulation of the subthalamic nucleus. NeuroImage: Clinical, 9, 436–449.
  • Harrington, D. L., Haaland, K. Y., & Hermanowicz, N. (1998). Temporal processing in the basal ganglia. Neuropsychology, 12(1), 3–12.
  • Herz, D. M., Eickhoff, S. B., Løkkegaard, A., & Siebner, H. R. (2014). Functional neuroimaging of motor control in Parkinson’s disease: A meta‐analysis. Human Brain Mapping, 35(7), 3227–3237.
  • Hoehn, M. M., & Yahr, M. D. (1967). Parkinsonism onset, progression, and mortality. Neurology, 17(5), 427–427.
  • Houde, J. F., & Nagarajan, S. S. (2011). Speech production as state feedback control. Frontiers in Human Neuroscience, 5, 82. doi:10.3389/fnhum.2011.00082
  • Jacobson, B. H., Johnson, A., Grywalski, C., Silbergleit, A., Jacobson, G., Benninger, M. S., & Newman, C. W. (1997). The voice handicap index (VHI) development and validation. American Journal of Speech-Language Pathology, 6(3), 66–70.
  • Jahanshahi, M., Jones, C. R. G., Zijlmans, J., Katzenschlager, R., Lee, L., Quinn, N., … Lees, A. J. (2010). Dopaminergic modulation of striato-frontal connectivity during motor timing in Parkinson’s disease. Brain, 133(3), 727–745.
  • Johari, K., & Behroozmand, R. (2017a). Premotor neural correlates of predictive motor timing for speech production and hand movement: Evidence for a temporal predictive code in the motor system. Experimental Brain Research, 235(5), 1439–1453.
  • Johari, K., & Behroozmand, R. (2017b). Temporal predictive mechanisms modulate motor reaction time during initiation and inhibition of speech and hand movement. Human Movement Science, 54, 41–50.
  • Johari, K., & Behroozmand, R. (2018). Functional Dissociation of Temporal Processing Mechanisms during Speech Production and Hand Movement: An ERP Study. Behavioural Brain Research, 347, 281–291.
  • Jones, C. R., & Jahanshahi, M. (2014). Contributions of the basal ganglia to temporal processing: Evidence from Parkinson’s disease. Timing & Time Perception, 2(1), 87–127.
  • Kelley, R., Flouty, O., Emmons, E. B., Kim, Y., Kingyon, J., Wessel, J. R., … Narayanan, N. S. (2018). A human prefrontal-subthalamic circuit for cognitive control. Brain, 141(1), 205–216.
  • Kinoshita, M., de Champfleur, N. M., Deverdun, J., Moritz-Gasser, S., Herbet, G., & Duffau, H. (2015). Role of fronto-striatal tract and frontal aslant tract in movement and speech: An axonal mapping study. Brain Structure and Function, 220(6), 3399–3412.
  • Koppe, G., Gruppe, H., Sammer, G., Gallhofer, B., Kirsch, P., & Lis, S. (2014). Temporal unpredictability of a stimulus sequence affects brain activation differently depending on cognitive task demands. Neuroimage, 101, 236–244. doi:10.1016/j.neuroimage.2014.07.008
  • Kühn, A. A., Williams, D., Kupsch, A., Limousin, P., Hariz, M., Schneider, G.‐H., … Brown, P. (2004). Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. Brain, 127(4), 735–746. doi:10.1093/brain/awh106
  • Lewis, P. A., Wing, A., Pope, P., Praamstra, P., & Miall, R. (2004). Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping. Neuropsychologia, 42(10), 1301–1312.
  • Li, C.-S. R., Krystal, J. H., & Mathalon, D. H. (2005). Fore-period effect and stop-signal reaction time. Experimental Brain Research, 167(2), 305–309.
  • Manes, J. L., Parkinson, A. L., Larson, C. R., Greenlee, J. D., Eickhoff, S. B., Corcos, D. M., & Robin, D. A. (2014). Connectivity of the subthalamic nucleus and globus pallidus pars interna to regions within the speech network: A meta‐analytic connectivity study. Human Brain Mapping, 35(7), 3499–3516.
  • Martin, T., Houck, J. M., Kičić, D., & Tesche, C. D. (2008). Interval timers and coupled oscillators both mediate the effect of temporally structured cueing. Neuroimage, 40(4), 1798–1806.
  • Mattes, S., & Ulrich, R. (1997). Response force is sensitive to the temporal uncertainty of response stimuli. Percept Psychophys, 59(7), 1089–1097.
  • Morein-Zamir, S., Chua, R., Franks, I., Nagelkerke, P., & Kingstone, A. (2007). Predictability influences stopping and response control. Journal of Experimental Psychology-Human Perception and Performance, 33(1), 149–162.
  • Narayana, S., Jacks, A., Robin, D. A., Poizner, H., Zhang, W., Franklin, C., … Fox, P. T. (2009). A noninvasive imaging approach to understanding speech changes following deep brain stimulation in Parkinson’s disease. American Journal of Speech-Language Pathology, 18(2), 146–161.
  • Nenadic, I., Gaser, C., Volz, H.-P., Rammsayer, T., Häger, F., & Sauer, H. (2003). Processing of temporal information and the basal ganglia: New evidence from fMRI. Experimental Brain Research, 148(2), 238–246.
  • New, A. B., Robin, D. A., Parkinson, A. L., Eickhoff, C. R., Reetz, K., Hoffstaedter, F., … Eickhoff, S. B. (2015). The intrinsic resting state voice network in Parkinson’s disease. Human Brain Mapping, 36(5), 1951–1962.
  • Niemi, P., & Naatanen, R. (1981). Foreperiod and simple reaction-time. Psychological Bulletin, 89(1), 133–162. doi: 10.1037//0033-2909.89.1.133
  • O'Boyle, D. J., Freeman, J. S., & Cody, F. W. (1996). The accuracy and precision of timing of self-paced, repetitive movements in subjects with Parkinson’s disease. Brain, 119(1), 51–70.
  • Pastor, M., Artieda, J., Jahanshahi, M., & Obeso, J. (1992). Time estimation and reproduction is abnormal in Parkinson’s disease. Brain, 115(1), 211–225.
  • Pastor, M. A., Day, B. L., Macaluso, E., Friston, K. J., & Frackowiak, R. S. (2004). The functional neuroanatomy of temporal discrimination. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24(10), 2585–2591.
  • Penhune, V. B., Zatorre, R. J., & Evans, A. C. (1998). Cerebellar contributions to motor timing: A PET study of auditory and visual rhythm reproduction. Journal of Cognitive Neuroscience, 10(6), 752–765.
  • Pollok, B., Gross, J., Kamp, D., & Schnitzler, A. (2008). Evidence for anticipatory motor control within a cerebello-diencephalic-parietal network. Journal of Cognitive Neuroscience, 20(5), 828–840.
  • Rammsayer, T., & Classen, W. (1997). Impaired temporal discrimination in Parkinson’s disease: Temporal processing of brief durations as an indicator of degeneration of dopaminergic neurons in the basal ganglia. International Journal of Neuroscience, 91(1–2), 45–55.
  • Ramnani, N., & Passingham, R. (2001). Changes in the human brain during rhythm learning. Journal of Cognitive Neuroscience, 13(7), 952–966.
  • Rao, S. M., Mayer, A. R., & Harrington, D. L. (2001). The evolution of brain activation during temporal processing. Nature Neuroscience, 4(3), 317–323.
  • Rowe, J. B., & Siebner, H. R. (2012). The motor system and its disorders. NeuroImage, 61(2), 464–477.
  • Schmidt, R. A. (1968). Anticipation and timing in human motor performance. Psychological Bulletin, 70(6, Pt.1), 631.
  • Schubotz, R. I. (2007). Prediction of external events with our motor system: Towards a new framework. Trends in Cognitive Sciences, 11(5), 211–218.
  • Schubotz, R. I., Sakreida, K., Tittgemeyer, M., & von Cramon, D. Y. (2004). Motor areas beyond motor performance: deficits in serial prediction following ventrolateral premotor lesions. Neuropsychology, 18(4), 638.
  • Schubotz, R. I., & von Cramon, D. (2003). Functional-anatomical concepts of human premotor cortex: evidence from fMRI and PET studies. Neuroimage, 20, S120.
  • Schubotz, R. I., & von Cramon, D. Y. (2001). Interval and ordinal properties of sequences are associated with distinct premotor areas. Cerebral Cortex, 11(3), 210–222.
  • Stelmach, G. E., Worringham, C. J., & Strand, E. A. (1986). Movement preparation in Parkinson’s disease. Brain, 109(6), 1179–1194.
  • Stoessl, A. J., Martin, W. W., McKeown, M. J., & Sossi, V. (2011). Advances in imaging in Parkinson’s disease. The Lancet Neurology, 10(11), 987–1001.
  • Timm, J., Schonwiesner, M., Schroger, E., & SanMiguel, I. (2016). Sensory suppression of brain responses to self-generated sounds is observed with and without the perception of agency. Cortex, 80, 5–20. doi:10.1016/j.cortex.2016.03.018
  • Tomlinson, C. L., Stowe, R., Patel, S., Rick, C., Gray, R., & Clarke, C. E. (2010). Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Movement Disorders, 25(15), 2649–2653.
  • Vallesi, A., McIntosh, A. R., Shallice, T., & Stuss, D. T. (2009). When time shapes behavior: fMRI evidence of brain correlates of temporal monitoring. Journal of Cognitive Neuroscience, 21(6), 1116–1126. doi:10.1162/jocn.2009.21098
  • Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11(18), R729–R732. doi: 10.1016/S0960-9822(01)00432-8
  • Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3(Supp) (11s), 1212.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.