1,121
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Effect of Tapping Bout Duration During Freely Chosen and Passive Finger Tapping on Rate Enhancement

, , ORCID Icon & ORCID Icon
Pages 351-363 | Received 14 Aug 2019, Accepted 26 May 2020, Published online: 11 Jun 2020

References

  • Angeli, C.A., Edgerton, V.R., Gerasimenko, Y.P. and Harkema, S.J., 2014. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain, 137(Pt 5), 1394–1409. https://doi.org/10.1093/brain/awu038
  • Bland, M.J. and Altman, D.J., 1996. Transforming data. BMJ, 312, 770. https://doi.org/10.1136/bmj.312.7033.770
  • Burke, R. E., Degtyarenko, A. M. and Simon, E. S., 2001. Patterns of locomotor drive to motoneurons and last-order interneurons: Clues to the structure of the CPG. Journal of Neurophysiology, 86(1), 447–462.
  • Carel, C., Loubinoux, I., Boulanouar, K., Manelfe, C., Rascol, O., Celsis, P. and Chollet, F., 2000. Neural substrate for the effects of passive training on sensorimotor cortical representation: A study with functional magnetic resonance imaging in healthy subjects. Journal of Cerebral Blood Flow and Metabolism, 20(3), 478–484. https://doi.org/10.1097/00004647-200003000-00006
  • Chapman, R.J. and Sillar, K.T., 2007. Modulation of a spinal locomotor network by metabotropic glutamate receptors. European Journal of Neuroscience, 26, 2257–2268. https://doi.org/10.1111/j.1460-9568.2007.05817.x
  • Collyer, C. E., Broadbent, H. A. and Church, R. M., 1992. Categorical time production: Evidence for discrete timing in motor control. Perception & Psychophysics, 51(2), 134–144. https://doi.org/10.3758/bf03212238
  • Cropper, E.C., Friedman, A.K., Jing, J., Perkins, M.H. and Weiss, K.R., 2014. Neuromodulation as a mechanism for the induction of repetition priming. Current Opinion in Neurobiology, 29(12), 33–38. https://doi.org/10.1016/j.conb.2014.04.011
  • Cropper, E.C., Jing, J., Perkins, M.H. and Weiss, K.R., 2017. Use of the Aplysia feeding network to study repetition priming of an episodic behavior. Journal of Neurophysiology, 118(3), 1861–1870. https://doi.org/10.1016/j.brainresrev.2009.08.002
  • Dietz, V., 2003. Spinal cord pattern generators for locomotion. Clinical Neurophysiology, 114(8), 1379–1389. https://doi.org/10.1016/S1388-2457(03)00120-2
  • Dimitrijevic, M.R., Gerasimenko, Y. and Pinter, M.M., 1998. Evidence for a spinal central pattern generator in Humansa. Annals of the New York Academy of Sciences, 860(1), 360–376. https://doi.org/10.1111/j.1749-6632.1998.tb09062.x
  • Edgerton, V.R., Courtine, G., Gerasimenko, Y.P., Lavrov, I., Ichiyama, R.M., Fong, A.J., Cai, L.L., Otoshi, C.K., Tillakaratne, N.J.K., Burdick, J.W. and Roy, R.R., 2008. Training locomotor networks. Brain Research Reviews, 57(1), 241–254. https://doi.org/10.1016/j.brainresrev.2007.09.002
  • Emanuelsen, A., Madeleine, P., Voigt, M and Hansen, E.A., 2019. Motor variability in elicited repeated bout rate enhancement is associated with higher sample entropy. Human Movement Science, 68:102520. https://doi.org/10.1016/j.humov.2019.102520
  • Emanuelsen, A., Voigt, M., Madeleine, P., Kjaer, P., Dam, S., Koefoed, N. and Hansen, E.A., 2018. Repeated Bout Rate Enhancement Is Elicited by Various Forms of Finger Tapping. Frontiers in Neuroscience, 12:526. https://doi.org/10.3389/fnins.2018.00526
  • Etlin, A., Blivis, D., Ben-Zwi, M. and Lev-Tov, A., 2010. Long and short multifunicular projections of sacral neurons are activated by sensory input to produce locomotor activity in the absence of supraspinal control. Journal of Neuroscience, 30(31), 10324–10336. https://doi.org/10.1523/JNEUROSCI.1208-10.2010
  • Finkel, E., Etlin, A., Cherniak, M., Mor, Y., Lev‐Tov, A. and Anglister, L., 2014. Neuroanatomical basis for cholinergic modulation of locomotor networks by sacral relay neurons with ascending lumbar projections. Journal of Comparative Neurology, 522(15), 1379–3455. https://doi.org/10.1002/cne.23613
  • Frigon, A., 2017. The neural control of interlimb coordination during mammalian locomotion. Journal of Neurophysiology, 117(6), 2224–2241. https://doi.org/10.1152/jn.00978.2016
  • Gad, P., Gerasimenko, Y., Zdunowski, S., Turner, A., Sayenko, D., Lu, D.C. and Edgerton, V.R., 2017. Weight bearing over-ground stepping in an exoskeleton with non-invasive spinal cord neuromodulation after motor complete paraplegia. Frontiers in Neuroscience, 11:333. https://doi.org/10.3389/fnins.2017.00333
  • Goulding, M., 2009. Circuits controlling vertebrate locomotion: moving in a new direction. Nature Reviews. Neuroscience, 10(7), 507–518. https://doi.org/10.1038/nrn2608
  • Grillner, S., 2009. Pattern generation. Encyclopedia of Neuroscience, 7, 487–494. https://doi.org/10.1016/B978-008045046-9.01341-3
  • Hansen, E.A., Ebbesen, B.D., Dalsgaard, A., Mora-Jensen, M.H. and Rasmussen, J., 2015. Freely chosen index finger tapping frequency is increased in repeated bouts of tapping. Journal of Motor Behavior, 47(6), 490–496. https://doi.org/10.1080/00222895.2015.1015675
  • Hansen, E.A. and Ohnstad, A.E., 2008. Evidence for freely chosen pedalling rate during submaximal cycling to be a robust innate voluntary motor rhythm. Experimental Brain Research, 186(3), 365–373. https://doi.org/10.1007/s00221-007-1240-5
  • Katz, P.S. and Harris-Warrick, R.M., 1990. Neuromodulation of the crab pyloric central pattern generator by serotonergic/cholinergic proprioceptive afferents. Journal of Neuroscience, 10(5), 1495–1512. https://doi.org/10.1523/JNEUROSCI.10-05-01495.1990
  • Klarner, T. and Zehr, E.P., 2018. Sherlock Holmes and the curious case of the human locomotor central pattern generator. Journal of Neurophysiology, 120(1), 53–77. https://doi.org/10.1152/jn.00554.2017
  • MacKay-Lyons, M., 2002. Central Pattern Generation of Locomotion: A Review of the Evidence. Physical Therapy, 82(1), 69–83. https://doi.org/10.1093/ptj/82.1.69
  • Madison, G., 2001. Variability in isochronous tapping: Higher order dependencies as a function of intertap interval. Journal of Experimental Psychology: Human Perception and Performance, 27(2), 411–422 https://doi.org/10.1037/0096-1523.27.2.411
  • Mora-Jensen, M.H., Madeleine, P. and Hansen, E.A., 2017. Vertical finger displacement is reduced in index finger tapping during repeated bout rate enhancement. Motor Control, 21(4), 457–467. https://doi.org/10.1123/mc.2016-0037
  • Moussay, S., Dosseville, F., Gauthier, A., Larue, J., Sesboüe, B. and Davenne, D., 2002. Circadian rhythms during cycling exercise and finger-tapping task. Chronobiology International, 19(6), 1137–1149. https://doi.org/10.1081/CBI-120015966
  • Nadim, F. and Bucher, D., 2014. Neuromodulation of neurons and synapses. Current Opinion in Neurobiology, 29:48–56. https://doi.org/10.1016/j.conb.2014.05.003
  • Nakagawa, M., Sasaki, R., Tsuiki, S., Miyaguchi, S., Kojima, S., Saito, K., Inukai, Y. and Onishi, H., 2017. Effects of Passive Finger Movement on Cortical Excitability. Frontiers in Human Neuroscience, 11:216. https://doi.org/10.3389/fnhum.2017.00216
  • Power, K.E. and Copithorne, D.B., 2013. Increased corticospinal excitability prior to arm cycling is due to enhanced supraspinal but not spinal motoneurone excitability. Applied Physiology, Nutrition, and Metabolism, 38(11), 1154–1161. https://doi.org/10.1139/apnm-2013-0084
  • Prochazka, A. and Ellaway, P., 2012. Sensory systems in the control of movement. Comprehensive Physiology, 2(4), 2615–2627. https://doi.org/10.1002/cphy.c100086
  • Reddy, H., Floyer, A., Donaghy, M. and Matthews, P., 2001. Altered cortical activation with finger movement after peripheral denervation: comparison of active and passive tasks. Experimental Brain Research, 138(4), 484–491. https://doi.org/10.1007/s002210100732
  • Sakamoto, M., Tazoe, T., Nakajima, T., Endoh, T., Shiozawa, S. and Komiyama, T., 2007. Voluntary changes in leg cadence modulate arm cadence during simultaneous arm and leg cycling. Experimental Brain Research, 176(1), 188–192. https://doi.org/10.1007/s00221-006-0742-x
  • Sánchez, J.A.D. and Kirk, M.D., 2000. Short-term synaptic enhancement modulates ingestion motor programs of aplysia. Journal of Neuroscience, 20:RC85 (1-7). https://doi.org/10.1523/JNEUROSCI.20-14-j0004.2000
  • Sánchez, J.A.D. and Kirk, M.D., 2002. Ingestion motor programs of Aplysia are modulated by short-term synaptic enhancement in cerebral-buccal interneuron pathways. Invert. Neurosci , 4(4), 199–212. https://doi.org/10.1007/s10158-002-0021-x
  • Sardroodian, M., Madeleine, P., Mora-Jensen, M.H. and Hansen, E.A., 2016. Characteristics of finger tapping are not affected by heavy strength training. Journal of Motor Behavior, 48(3), 256–263. https://doi.org/10.1080/00222895.2015.1089832
  • Schlinger, H.D.J., 2015. Behavior analysis and the good life. Philosophy, Psychiatry, and Psychology, 22(4), 267–270. https://doi.org/10.1353/ppp.2015.0052
  • Shima, K., Tamura, Y., Tsuji, T., Kandori, A. and Sakoda, S., 2011. A CPG synergy model for evaluation of human finger tapping movements. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, 4443–4448. https://doi.org/10.1109/IEMBS.2011.6091102
  • Siniscalchi, M.J., Cropper, E.C., Jing, J. and Weiss, K.R., 2016. Repetition priming of motor activity mediated by a central pattern generator: The importance of extrinsic vs. intrinsic program initiators. Journal of Neurophysiology, 116(4), 1821–1830. https://doi.org/10.1152/jn.00365.2016
  • Stang, J., Wiig, H., Hermansen, M. and Hansen, E.A., 2016. Voluntary movement frequencies in submaximal one-and two-legged knee extension exercise and pedaling. Frontiers in Human Neuroscience, 10:36. https://doi.org/10.3389/fnhum.2016.00036
  • Tsuiki, S., Sasaki, R., Pham, M.V., Miyaguchi, S., Kojima, S., Saito, K., Inukai, Y., Otsuru, N. and Onishi, H., 2019. Repetitive passive movement modulates corticospinal excitability: effect of movement and rest cycles and subject attention. Frontiers in behavioral neuroscience, 13:38. https://doi.org/10.3389/fnbeh.2019.00038
  • Wyss, P.O., Hock, A. and Kollias, S., 2016. the application of human spinal cord magnetic resonance spectroscopy to clinical studies: A review. Seminars in Ultrasound, CT, and MRI, 38(2), 153–162. https://doi.org/10.1053/j.sult.2016.07.005
  • Zehr, E.P., 2005. Neural control of rhythmic human movement: the common core hypothesis. Exercise and Sport Sciences Reviews, 33(1), 54–60.
  • Zehr, E.P., Carroll, T.J., Chua, R., Collins, D.F., Frigon, A., Haridas, C., Hundza, S.R. and Thompson, A.K., 2004. Possible contributions of CPG activity to the control of rhythmic human arm movement. Canadian Journal of Physiology and Pharmacology, 82(8), 556–568. https://doi.org/10.1139/y04-056
  • Zehr, E.P. and Duysens, J.E.J., 2004. Regulation of arm and leg movement during human locomotion. Neuroscientist, 10(4), 347–361. https://doi.org/10.1177/1073858404264680