361
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

TDCS of the Primary Motor Cortex: Learning the Absolute Dimension of a Complex Motor Task

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 431-444 | Received 13 Dec 2019, Accepted 30 Jun 2020, Published online: 13 Jul 2020

References

  • Adkins, D. L., Boychuk, J., Remple, M. S., & Kleim, J. A. (2006). Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. Journal of Applied Physiology, 101(6), 1776–1782. https://doi.org/10.1152/japplphysiol.00515.2006
  • Apolinário-Souza, T., Romano-Silva, M. A., de Miranda, D. M., Malloy-Diniz, L. F., Benda, R. N., Ugrinowitsch, H., & Lage, G. M. (2016). The primary motor cortex is associated with learning the absolute, but not relative, timing dimension of a task: A tDCS study. Physiology & Behavior, 160, 18–25. https://doi.org/10.1016/j.physbeh.2016.03.025
  • Asseldonk, E. H. F. & Boonstra, T. A. (2016). Transcranial direct current stimulation of the leg motor cortex enhances coordinated motor output during walking with a large inter-individual variability. Brain Stimulation, 9(2), 182–190. https://doi.org/10.1016/j.brs.2015.10.001
  • Balsalobre-Fernández, C., Tejero-González, C. M., del Campo-Vecino, J., & Bavaresco, N. (2014). The concurrent validity and reliability of a low-cost, high-speed camera-based method for measuring the flight time of vertical jumps. The Journal of Strength & Conditioning Research, 28(2), 528. https://doi.org/10.1519/JSC.0b013e318299a52e
  • Bhattacharjee, S., Kashyap, R., Rapp, B., Oishi, K., Desmond, J. E., & Chen, S. H. A. (2019). Simulation analyses of tDCS montages for the investigation of dorsal and ventral pathways. Scientific Reports, 9(1), 12178. https://doi.org/10.1038/s41598-019-47654-y
  • Carmena, J. M., Lebedev, M. A., Crist, R. E., O’Doherty, J. E., Santucci, D. M., Dimitrov, D. F., Patil, P. G., Henriquez, C. S., &Nicolelis, M. A. L. (2003). Learning to control a brain-machine interface for reaching and grasping by primates. PLOS Biology, 1(2), E42. https://doi.org/10.1371/journal.pbio.0000042
  • Churchland, M. M., Santhanam, G., & Shenoy, K. V. (2006). Preparatory activity in premotor and motor cortex reflects the speed of the upcoming reach. Journal of Neurophysiology, 96(6), 3130–3146. https://doi.org/10.1152/jn.00307.2006
  • Classen, J., Liepert, J., Wise, S. P., Hallett, M., & Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. Journal of Neurophysiology, 79(2), 1117–1123. https://doi.org/10.1152/jn.1998.79.2.1117
  • Cohen, R. G., & Sternad, D. (2009). Variability in motor learning: Relocating, channeling and reducing noise. Experimental Brain Research, 193(1), 69–83. https://doi.org/10.1007/s00221-008-1596-1
  • Craig, C. M., Delay, D., Grealy, M. A., & Lee, D. N. (2000). Guiding the swing in golf putting. Nature, 405(6784), 295–296. https://doi.org/10.1038/35012690
  • Cunningham, D. A., Machado, A., Yue, G. H., Carey, J. R., & Plow, E. B. (2013). Functional somatotopy revealed across multiple cortical regions using a model of complex motor task. Brain Research, 1531, 25–36. https://doi.org/10.1016/j.brainres.2013.07.050
  • Dayan, E., & Cohen, L. G. (2011). Neuroplasticity subserving motor skill learning. Neuron, 72(3), 443–454. https://doi.org/10.1016/j.neuron.2011.10.008
  • Delay, D., Nougier, V., Orliaguet, J.-P., & Coello, Y. (1997). Movement control in golf putting. Human Movement Science, 16(5), 597–619. https://doi.org/10.1016/S0167-9457(97)00008-0
  • Doyon, J., Gabitov, E., Vahdat, S., Lungu, O., & Boutin A. (2018). Current issues related to motor sequence learning in humans. Current Opinion in Behavioral Sciences, 20, 89–97. https://doi.org/10.1016/j.cobeha.2017.11.012
  • Enoka, R. M., Pearson, K. G. (2013). The motor unit and muscle action. In E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. A. Siegelbaum, A. J. Hudspeth (Eds.), Principles of neural science (5th ed., pp. 768–789). The McGraw-Hill Companies.
  • Fitts, P. M. (1964). Perceptual-motor skills learning. In A. W. Melton (Ed.). Categories of human learning (1st ed., pp. 243–285). Academic Press.
  • Floyer-Lea, A., & Matthews, P. M. (2005). Distinguishable brain activation networks for short- and long-term motor skill learning. Journal of Neurophysiology, 94(1), 512–518. https://doi.org/10.1152/jn.00717.2004
  • Ghamari, A., Sohrabi, M., & Kakhki, A. S. (2019). The effect of how to perform movement sequences on absolute and relative timing transfer. Psicológica Journal, 40(1), 1–25. https://doi.org/10.2478/psicolj-2019-0001
  • Glencross, D. J., Whiting, H. T. a. J., & Abernethy, B. (1994). Motor control, motor learning and the acquisition of skill: Historical trends and future directions. International Journal of Sport Psychology, 25(1), 32–52.
  • Graziano, M. S. A., Taylor, C. S. R., Moore, T., & Cooke, D. F. (2002). The cortical control of movement revisited. Neuron, 36(3), 349–362. https://doi.org/10.1016/S0896-6273(02)01003-6
  • Grealy, M. A., & Mathers, J. F. (2014). Motor control strategies and the effects of fatigue on golf putting performance. Frontiers in Psychology, 4, 1005. https://doi.org/10.3389/fpsyg.2013.01005
  • Hunter, A. H., Angilletta, M. J., Pavlic, T., Lichtwark, G., & Wilson, R. S. (2018). Modeling the two-dimensional accuracy of soccer kicks. Journal of Biomechanics, 72, 159–166. https://doi.org/10.1016/j.jbiomech.2018.03.003
  • Kami, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995).. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature,  377(6545), 155–158. https://doi.org/10.1038/377155a0.
  • Kaminski, E., Steele, C. J., Hoff, M., Gundlach, C., Rjosk, V., Sehm, B., Villringer, A., & Ragert, P. (2016). Transcranial direct current stimulation (tDCS) over primary motor cortex leg area promotes dynamic balance task performance. Clinical Neurophysiology, 127(6), 2455–2462. https://doi.org/10.1016/j.clinph.2016.03.018
  • Kantak, S. S., & Winstein, C. J. (2012). Learning-performance distinction and memory processes for motor skills: A focused review and perspective. Behavioural Brain Research, 228(1), 219–231. https://doi.org/10.1016/j.bbr.2011.11.028
  • Kaski, D., Quadir, S., Patel, M., Yousif, N., & Bronstein, A. M. (2012). Enhanced locomotor adaptation aftereffect in the “broken escalator” phenomenon using anodal tDCS. Journal of Neurophysiology, 107(9), 2493–2505. https://doi.org/10.1152/jn.00223.2011
  • Kessler, S. K., Turkeltaub, P. E., Benson, J. G., & Hamilton, R. H. (2012). Differences in the experience of active and sham transcranial direct current stimulation. Brain Stimulation, 5(2), 155–162. https://doi.org/10.1016/j.brs.2011.02.007
  • Kuriyama, K., Stickgold, R., & Walker, M. P. (2004). Sleep-dependent learning and motor-skill complexity. Learning & Memory, 11(6), 705–713. https://doi.org/10.1101/lm.76304
  • Lage, G. M., Apolinário-Souza, T., Albuquerque, M. R., Portes, L. L., Januário, M. S., Vieira, M. M., & Ugrinowitsch, H. (2017). The effect of constant practice in transfer tests. Motriz: Revista de Educação Física, 23(1), 22–32. https://doi.org/10.1590/s1980-6574201700010004
  • Lage, G. M., Alves, M. A. F., Oliveira, F. S., Palhares, L., Ugrinowitsch, H., & Benda R. N. (2007). The combination of practice schedules: Effects on relative and absolute dimensions of the task. Journal of Human Movement Studies, 52, 21–35.
  • Lai, Q., & Shea, C. H. (1998). Generalized motor program (GMP) learning: Effects of reduced frequency of knowledge of results and practice variability. Journal of Motor Behavior, 30(1), 51–59. https://doi.org/10.1080/00222899809601322
  • Learmonth, G., Thut, G., Benwell, C. S. Y., & Harvey, M. (2015). The implications of state-dependent tDCS effects in aging: Behavioural response is determined by baseline performance. Neuropsychologia, 74, 108–119. https://doi.org/10.1016/j.neuropsychologia.2015.01.037
  • Lee, C., Jung, Y.-J., Lee, S. J., & Im, C.-H. (2017). COMETS2: An advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation. Journal of Neuroscience Methods, 277, 56–62. https://doi.org/10.1016/j.jneumeth.2016.12.008
  • Lehmann, N., Tolentino‐Castro, J. W., Kaminski, E., Ragert, P., Villringer, A., & Taubert, M. (2019). Interindividual differences in gray and white matter properties are associated with early complex motor skill acquisition. Human Brain Mapping, 40(15), 4316–4330. https://doi.org/10.1002/hbm.24704
  • Lelis-Torres, N., Ugrinowitsch, H., Apolinário-Souza, T., Benda, R. N., & Lage, G. M. (2017). Task engagement and mental workload involved in variation and repetition of a motor skill. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-15343-3
  • Lohse, K. R., Wadden, K., Boyd, L. A., & Hodges, N. J. (2014). Motor skill acquisition across short and long time scales: A meta-analysis of neuroimaging data. Neuropsychologia, 59, 130–141. https://doi.org/10.1016/j.neuropsychologia.2014.05.001
  • Lotze, M., Erb, M., Flor, H., Huelsmann, E., Godde, B., & Grodd, W. (2000). FMRI evaluation of somatotopic representation in human primary motor cortex. NeuroImage, 11(5 Pt 1), 473–481. https://doi.org/10.1006/nimg.2000.0556
  • Malhotra, N., Poolton, J. M., Wilson, M. R., Omuro, S., & Masters, R. S. W. (2015). Dimensions of movement specific reinvestment in practice of a golf putting task. Psychology of Sport and Exercise, 18, 1–8. https://doi.org/10.1016/j.psychsport.2014.11.008
  • Lugassy, D., Herszage, J., Pilo, R., Brosh, T., & Censor, N. (2018). Consolidation of complex motor skill learning: Evidence for a delayed offline process. Sleep, 41(9). zsy123. https://doi.org/10.1093/sleep/zsy123
  • Martin, S. J., & Morris, R. G. M. (2001). Cortical plasticity: It's all the range!! Current Biology, 11(2), R57–R59. https://doi.org/10.1016/S0960-9822(01)00015-X
  • Mcardle, W. D.; Katch, F. L.; Katch, V. L. (2010) Exercise physiology: Nutrition, energy, and human performance (7th ed.). Williams & Wilkins.
  • Mcginnis, P. M. (2015). Biomechanics of sport and exercise (3rd ed.) Human Kinetics.
  • Mizuguchi, N., Katayama, T., & Kanosue, K. (2018). The effect of cerebellar transcranial direct current stimulation on a throwing task depends on individual level of task performance. Neuroscience, 371, 119–125. https://doi.org/10.1016/j.neuroscience.2017.11.048
  • Nachev, P., Kennard, C., & Husain, M. (2008). Functional role of the supplementary and pre-supplementary motor areas. Nature Reviews Neuroscience, 9(11), 856–869. https://doi.org/10.1038/nrn2478
  • Navarro, M., van der Kamp, J., Schor, P., & Savelsbergh, G. J. P. (2018). Implicit learning increases shot accuracy of football players when making strategic decisions during penalty kicking. Human Movement Science, 61, 72–80. https://doi.org/10.1016/j.humov.2018.07.004
  • Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., Paulus, W., Hummel, F., Boggio, P. S., Fregni, F., &, Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1(3), 206–223. https://doi.org/10.1016/j.brs.2008.06.004
  • Nitsche, M. A., Liebetanz, D., Antal, A., Lang, N., Tergau, F., & Paulus, W. (2003). Chapter 27 Modulation of cortical excitability by weak direct current stimulation – technical, safety and functional aspects. Supplements to Clinical Neurophysiology, 56, 255–276. https://doi.org/10.1016/S1567-424X(09)70230-2
  • Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., & Tergau, F. (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience, 15(4), 619–626. https://doi.org/10.1162/089892903321662994
  • Nogueira, N. G., de H. M., Bacelar, M. F. B., Ferreira, B., de P., Parma, J. O., & Lage, G. M. (2019). Association between the catechol-O-methyltransferase (COMT) Val158Met polymorphism and motor behavior in healthy adults: A study review. Brain Research Bulletin, 144, 223–232. https://doi.org/10.1016/j.brainresbull.2018.11.002
  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4
  • Oliveira, J. R. V., de, Romano-Silva, M. A., Ugrinowitsch, H., Apolinário-Souza, T., Fernandes, L. A., Parma, J. O., & Lage, G. M. (2019). Cathodal tDCS of the left posterior parietal cortex increases proprioceptive drift. Journal of Motor Behavior, 51(3), 272–280. https://doi.org/10.1080/00222895.2018.1468311
  • Palmer, K., Chiviacowsky, S., & Wulf, G. (2016). Enhanced expectancies facilitate golf putting. Psychology of Sport and Exercise, 22, 229–232. https://doi.org/10.1016/j.psychsport.2015.08.009
  • Paulus, Walter. (2011). Transcranial electrical stimulation (tES – tDCS; tRNS, tACS) methods. Neuropsychological Rehabilitation, 21(5), 602–617. https://doi.org/10.1080/09602011.2011.557292
  • Paz, R., & Vaadia, E. (2009). Learning from learning: What can visuomotor adaptations tell us about the neuronal representation of movement? Advances in Experimental Medicine and Biology, 629, 221–242. https://doi.org/10.1007/978-0-387-77064-2_11
  • Pesce, C., Croce, R., Ben-Soussan, T. D., Vazou, S., McCullick, B., Tomporowski, P. D., & Horvat, M. (2019). Variability of practice as an interface between motor and cognitive development. International Journal of Sport and Exercise Psychology, 17(2), 133–152. https://doi.org/10.1080/1612197X.2016.1223421
  • Pew, R. W. (1974). Human perceptual-motor performance. In B. H. Kantowitz (Ed.). Human information processing: Tutorials in performance and cognition. Erlbaum.
  • Poo, M., Pignatelli, M., Ryan, T. J., Tonegawa, S., Bonhoeffer, T., Martin, K. C., Rudenko, A., Tsai, L.-H., Tsien, R. W., Fishell, G., Mullins, C., Tiago Gonçalves, J., Shtrahman, M., Johnston, S. T., Gage, F. H., Dan, Y., Long, J., Buzsáki, G., & Stevens, C. (2016). What is memory? The present state of the engram. BMC Biology, 14(1), 40. https://doi.org/10.1186/s12915-016-0261-6
  • Rieth, C. A., Cai, D. J., McDevitt, E. A., & Mednick, S. C. (2010). The role of sleep and practice in implicit and explicit motor learning. Behavioural Brain Research, 214(2), 470–474. https://doi.org/10.1016/j.bbr.2010.05.052
  • Roland, P. E. (1993). Brain activation. Wiley-Liss.
  • Rushworth, M. F. S., Hadland, K. A., Paus, T., & Sipila, P. K. (2002). Role of the human medial frontal cortex in task switching: A combined fMRI and TMS study. Journal of Neurophysiology, 87(5), 2577–2592. https://doi.org/10.1152/jn.2002.87.5.2577
  • Schlerf, J. E., Verstynen, T. D., Ivry, R. B., & Spencer, R. M. C. (2010). Evidence of a novel somatopic map in the human neocerebellum during complex actions. Journal of Neurophysiology, 103(6), 3330–3336. https://doi.org/10.1152/jn.01117.2009
  • Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82(4), 225–260. https://doi.org/10.1037/h0076770
  • Schmidt, R. A. (2003). Motor schema theory after 27 years: Reflections and implications for a new theory. Research Quarterly for Exercise and Sport, 74(4), 366–375. https://doi.org/10.1080/02701367.2003.10609106
  • Shafizadeh, M., McMorri, T., & Sproule, J. (2011). Effect of different external attention of focus instruction on learning of golf putting skill. Perceptual and Motor Skills, 113(2), 662–670. https://doi.org/10.2466/05.23.25.PMS.113.5.662-670
  • Shemmell, J., Riek, S., Tresilian, J. R., & Carson, R. G. (2007). The role of the primary motor cortex during skill acquisition on a two-degrees-of-freedom movement task. Journal of Motor Behavior, 39(1), 29–39. https://doi.org/10.3200/JMBR.39.1.29-39
  • Shoham, S., Paninski, L. M., Fellows, M. R., Hatsopoulos, N. G., Donoghue, J. P., & Normann, R. A. (2005). Statistical encoding model for a primary motor cortical brain-machine interface. IEEE Transactions on Biomedical Engineering, 52(7), 1312–1322. https://doi.org/10.1109/TBME.2005.847542
  • Snoddy, G. S. (1926). Learning and stability: A psychophysiological analysis of a case of motor learning with clinical applications. Journal of Applied Psychology, 10(1), 1–36. https://doi.org/10.1037/h0075814
  • Stratton, S. M., Liu, Y.-T., Hong, S. L., Mayer-Kress, G., & Newell, K. M. (2007). Snoddy (1926) revisited: Time scales of motor learning. Journal of Motor Behavior, 39(6), 503–515. https://doi.org/10.3200/JMBR.39.6.503-516
  • Suzuki, K., Suzuki, T., & Ono, Y. (2017). Effect of middle-temporal tDCS stimulation on dance-game exercise performance. 生体医工学. Transactions of Japanese Society for Medical and Biological Engineering, 55, 503–505. https://doi.org/10.11239/jsmbe.55Annual.503
  • Tseng, P., Hsu, T.-Y., Chang, C.-F., Tzeng, O. J. L., Hung, D. L., Muggleton, N. G., Walsh, V., Liang, W.-K., Cheng, S.-K., & Juan, C.-H. (2012). Unleashing potential: Transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. Journal of Neuroscience, 32(31), 10554–10561. https://doi.org/10.1523/JNEUROSCI.0362-12.2012
  • Utz, K. S., Dimova, V., Oppenländer, K., & Kerkhoff, G. (2010). Electrified minds: Transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology – A review of current data and future implications. Neuropsychologia, 48(10), 2789–2810. https://doi.org/10.1016/j.neuropsychologia.2010.06.002
  • Verrel, J., Pologe, S., Manselle, W., Lindenberger, U., & Woollacott, M. (2013). Coordination of degrees of freedom and stabilization of task variables in a complex motor skill: Expertise-related differences in cello bowing. Experimental Brain Research, 224(3), 323–334. https://doi.org/10.1007/s00221-012-3314-2
  • Vollmann, H., Conde, V., Sewerin, S., Taubert, M., Sehm, B., Witte, O. W., Villringer, & A., Ragert, P. (2013). Anodal transcranial direct current stimulation (tDCS) over supplementary motor area (SMA) but not pre-SMA promotes short-term visuomotor learning. Brain Stimulation, 6(2), 101–107. https://doi.org/10.1016/j.brs.2012.03.018
  • Wrightson, J. G., Twomey, R., Ross, E. Z., & Smeeton, N. J. (2015). The effect of transcranial direct current stimulation on task processing and prioritisation during dual-task gait. Experimental Brain Research, 233(5), 1575–1583. https://doi.org/10.1007/s00221-015-4232-x
  • Wulf, G., Schmidt, R. A., & Deubel, H. (1993). Reduced feedback frequency enhances generalized motor program learning but not parameterization learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(5), 1134–1150. https://doi.org/10.1037/0278-7393.19.5.1134
  • Wulf, G., & Shea, C. H. (2002). Principles derived from the study of simple skills do not generalize to complex skill learning. Psychonomic Bulletin & Review, 9(2), 185–211. https://doi.org/10.3758/bf03196276
  • Zhou, J., Hao, Y., Wang, Y., Jor’dan, A., Pascual‐Leone, A., Zhang, J., Fang, J., & Manor, B. (2014). Transcranial direct current stimulation reduces the cost of performing a cognitive task on gait and postural control. European Journal of Neuroscience, 39(8), 1343–1348. https://doi.org/10.1111/ejn.12492
  • Zhu, F. F., Yeung, A. Y., Poolton, J. M., Lee, T. M. C., Leung, G. K. K., & Masters, R. S. W. (2015). Cathodal transcranial direct current stimulation over left dorsolateral prefrontal cortex area promotes implicit motor learning in a golf putting task. Brain Stimulation, 8(4), 784–786. https://doi.org/10.1016/j.brs.2015.02.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.