541
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Intermittent Vision and Goal-Directed Movement: A Review

&
Pages 523-543 | Received 04 Jun 2020, Accepted 02 Jul 2020, Published online: 20 Jul 2020

REFERENCES

  • Adams, J.A. (1971). A closed-loop theory of motor learning. Journal of Motor Behavior, 3, 111–150. https://doi.org/10.1080/00222895.1971.10734898
  • Appelbaum, L.G., Cain, M.S., Schroeder, J.E., Darling, E.F., & Mitroff, S.R. (2012). Stroboscopic visual training improves information encoding in short-term memory. Attention, Perception and Psychophysics, 74, 1681–1691. https://doi.org/10.3758/s13414-012-0344-6
  • Appelbaum, L.G. & Erickson, G. (2018). Sports vision training: A review of the state-of-the-art in digital training techniques. International Review of Sport and Exercise Psychology, 11, 160–189. https://doi.org/10.1080/1750984X.2016.1266376
  • Appelbaum, L.G., Schroeder, J.E., Cain, M.S. & Mitroff, S.R. (2011). Improved visual cognition through stroboscopic training. Frontiers in Psychology, 2, 276. https://doi.org/10.3389/fpsyg.2011.00276
  • Assaiante, C., Marchand, A.R. & Ambland, B. (1989). Discrete visual samples may control locomotor equilibrium and foot positioning in man. Journal of Motor Behavior, 21, 72–91. https://doi.org/10.1080/00222895.1989.10735466
  • Ballester, R., Huertas, F., Uji, M., & Bennett, S.J. (2018). Stroboscopic vision and sustained attention during coincidence anticipation. Scientific Reports, 7, 17898. https://doi.org/10.1038/s41598-017-18092-5
  • Barnes, G.R. & Asselman, P.T. (1992). Pursuit of intermittently illuminated moving targets in the human. The Journal of Physiology (Lond.), 445, 617–637. https://doi.org/10.1113/jphysiol.1992.sp018943
  • Bennett, S.J., Ashford, D.G., & Elliott, D (2003). Intermittent vision and one-handed catching: The temporal limits of binocular and monocular integration. Motor Control, 7, 378–387. https://doi.org/10.1123/mcj.7.4.384
  • Bennett, S.J., Ashford, D., Rioja, N., Coull, J. & Elliott, D. (2006). Integration of intermittent visual samples over time and between the eyes. Journal of Motor Behavior, 38, 439–450. https://doi.org/10.3200/JMBR.38.6.439-450
  • Bennett, S., Ashford, D., Rioja, N. & Elliott, D. (2004). Intermittent vision and one-handed catching: The effect of general and specific task experience. Journal of Motor Behavior, 36, 442–449. https://doi.org/10.3200/JMBR.36.4.442-449
  • Bennett, S.J., Elliott, D., Weeks, D.J., & Keil, D. (2003). The effects of intermittent vision on prehension under binocular and monocular viewing. Motor Control, 7, 46–56. https://doi.org/10.1123/mcj.7.1.46
  • Bennett, S.J., Hayes, S.J., & Uji, M. (2018). Stroboscopic vision when interacting with multiple objects: Perturbation is not the same as elimination. Frontiers in Psychology, 9, 1290. https://doi.org/10.3389/fpsyg.2018.01290
  • Braly, A.M. & DeLucia, P.R. (2020). Can stroboscopic training improve judgments of time-to-collision? Human Factors, 62, 152–165.
  • Carlton, L.G. (1981). Visual information: The control of aiming movements. Quarterly Journal of Experimental Psychology, 33(a), 87–93. https://doi.org/10.1080/14640748108400771
  • Chua, R. & Elliott, D. (1993). Visual regulation of manual aiming. Human Movement Science, 12, 365–401.
  • Coull, J., Weir, P.L., Tremblay, L., Weeks, D.J. & Elliott, D. (2000). Monocular and binocular vision in the control of goal-directed movement: An elusive binocular advantage. Journal of Motor Behavior, 32, 347–360.
  • Elliott, D. (1986). Continuous visual information may be important afterall: A failure to replicate Thomson (1983). Journal of Experimental Psychology: Human Perception and Performance, 12, 388–391.
  • Elliott, D. (1987). The influence of walking speed and prior practice on locomotor distance estimation. Journal of Motor Behavior, 19, 476–485. https://doi.org/10.1080/00222895.1987.10735425
  • Elliott, D. (1988). The influence of visual target and limb information on manual aiming. Canadian Journal of Psychology, 42, 57–68. https://doi.org/10.1037/h0084172
  • Elliott, D., & Calvert, R. (1990). The influence of uncertainty and premovement visual information on manual aiming. Canadian Journal of Psychology, 44, 501–511. https://doi.org/10.1037/h0084263
  • Elliott, D., Calvert, R., Jaeger, M. & Jones, R. (1990). A visual representation and the control of manual aiming movements. Journal of Motor Behavior, 22, 327–348. https://doi.org/10.1080/00222895.1990.10735517
  • Elliott, D., Carson, R. G., Goodman, D., & Chua, R. (1991). Discrete vs. continuous visual control of manual aiming. Human Movement Science, 10, 393–418. https://doi.org/10.1016/0167-9457(91)90013-N
  • Elliott, D., Chua, R., & Pollock, B.J. (1994). The influence of intermittent vision on manual aiming. Acta Psychologica, 85, 1–13. https://doi.org/10.1016/0001-6918(94)90016-7
  • Elliott, D., Chua, R., Pollock, B.J., & Lyons, J. (1995a). Optimizing the use of vision in manual aiming: The role of practice. The Quarterly Journal of Experimental Psychology A, 48(1), 72–83. https://doi.org/10.1080/14640749508401376
  • Elliott, D., Dutoy, C., Andrew, M., Burkitt, J.J., Grierson, L.E.M., Lyons, J.L., Hayes, S.J., & Bennett, S.J. (2014). The influence of visual feedback and prior knowledge about feedback on vertical aiming strategies. Journal of Motor Behavior, 46, 433–443. https://doi.org/10.1080/00222895.2014.933767
  • Elliott, D., Hansen, S., Grierson, L.E.M., Lyons, J., Bennett, S.J. & Hayes, S.J. (2010). Goal-directed aiming: Two components, but multiple processes. Psychological Bulletin, 136, 1023. https://doi.org/10.1037/a0020958
  • Elliott, D., Hansen, S., Mendoza, J. & Tremblay, L. (2004). Learning to optimize speed, accuracy, and energy expenditure: a framework for understanding speed-accuracy relations in goal-directed aiming. Journal of Motor Behavior, 36, 339–351. https://doi.org/10.3200/JMBR.36.3.339-351
  • Elliott, D., Helsen, W.F. & Chua, R. (2001). A century later: Woodworth's (1899) two-component model of goal-directed aiming. Psychological Bulletin, 127, 342–357. https://doi.org/10.1037/0033-2909.127.3.342
  • Elliott, D., & Jaeger, M. (1988). Practice and the visual control of manual aiming movements. Journal of Human Movement Studies, 14, 279–291.
  • Elliott, D., & Lyons, J. (1998). Optimizing the use of vision in skill acquisition. In J. Piek (Ed.), Motor control and human skill: A multidisciplinary perspective (pp. 57–72). Human Kinetics.
  • Elliott, D., Lyons, J. & Dyson, K. (1997). Rescaling an acquired discrete aiming movement: Specific or general motor learning? Human Movement Science, 16, 81–96. https://doi.org/10.1016/S0167-9457(96)00041-3
  • Elliott, D., Lyons, J.L., Hayes, S.J., Burkitt, J.J., Roberts, J.W., Grierson, L.E.M., Hansen, S., & Bennett, S.J. (2017). The multiple process model of goal-directed reaching revisited. Neuroscience & Biobehavioral Reviews, 72, 95–110. https://doi.org/10.1016/j.neubiorev.2016.11.016
  • Elliott, D. & Madalena, J. (1987). The influence of premovement visual information on manual aiming. The Quarterly Journal of Experimental Psychology A, 39(3), 541–559. https://doi.org/10.1080/14640748708401802
  • Elliott, D., Pollock, B.J., Lyons, J., & Chua, R. (1995b). Intermittent vision and discrete manual aiming. Perceptual and Motor Skills, 80, 1203–1213. https://doi.org/10.2466/pms.1995.80.3c.1203
  • Elliott, D., Zuberec, S., & Milgram, P. (1994). The effects of periodic visual occlusion on ball catching. Journal of Motor Behavior, 26,113–122. https://doi.org/10.1080/00222895.1994.9941666
  • Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47, 381–391. https://doi.org/10.1037/h0055392
  • Fitts, P.M. & Peterson, J.R. (1964). Information capacity of discrete motor responses. Journal of Experimental Psychology, 67, 103–112. https://doi.org/10.1037/h0045689
  • Fleisman, E.A. & Bartlett, C.J. (1969). Human abilities. Annual Review of Psychology, 20, 349–380. https://doi.org/10.1146/annurev.ps.20.020169.002025
  • Flowers, K. (1975). Handedness and controlled movement. British Journal of Psychology, 66, 39–52. https://doi.org/10.1111/j.2044-8295.1975.tb01438.x
  • Grossman, E.D. & Blake, R. (1999). Perception of coherent motion, biological motion and form-from-motion under dim-light conditions. Vision Research, 39, 3721–3727. https://doi.org/10.1016/S0042-6989(99)00084-X
  • Hansen, S., Glazebrook, C., Anson, J.G., Weeks, D.J. & Elliott, D. (2006). The influence of advance information about target location and visual feedback on movement planning and execution. Canadian Journal of Experimental Psychology, 60, 200–208. https://doi.org/10.1037/cjep2006019
  • Hansen, S., Hayes, S., & Bennett, S.J. (2011). Inter-ocular and intra-ocular integration during prehension. Neuroscience Letters, 487, 17–21. https://doi.org/10.1016/j.neulet.2010.09.065
  • Hansen, S., Hayes, S.J., & Bennett, S.J. (2013). Integration of alternating monocular samples during goal-directed aiming. Motor Control, 17, 95–104. https://doi.org/10.1123/mcj.17.1.95
  • Henry, F.M. (1968). Specificity vs. generality in learning motor skill. In R.C. Brown & G.S. Kenyon (Eds.), Classical studies on physical activity. Prentice Hall.
  • Hülsdünker, T., Rentz, C., Ruhnow, D., Käsbauer, H., Strüder, H.K., & Mierau, A. (2019). The effect of 4-week stroboscopic training on visual function and sport-specific visuomotor performance in top-level badminton players. International Journal of Sports Physiology and Performance, 14, 343–350. https://doi.org/10.1123/ijspp.2018-0302
  • Johnson, C.A. (1976). Effects of luminance and stimulus distance on accommodation and visual resolution. Journal of the Optical Society of America, 66, 138–142. https://doi.org/10.1364/josa.66.000138
  • Keele, S.W. & Posner, M.I. (1968). Processing of visual feedback in rapid movements. Journal of Experimental Psychology, 77, 155–158. https://doi.org/10.1037/h0025754
  • Khan, M.A., Elliott, D., Coull, J., Chua, R. & Lyons, J. (2002). Optimal control strategies under different feedback schedules: Kinematic evidence. Journal of Motor Behavior, 34, 45–57. https://doi.org/10.1080/00222890209601930
  • Khan, M.A., & Franks, I.M. (2003). Online versus offline processing of visual feedback in the production of component submovements. Journal of Motor Behavior, 35, 285–295. https://doi.org/10.1080/00222890309602141
  • Khan, M.A., Franks, I.M. & Goodman, D. (1998). The effect of practice on the control of rapid aiming movements: Evidence for an interdependence between programming and feedback processing. Quarterly Journal of Experimental Psychology, 51(a), 425–444. https://doi.org/10.1080/713755756
  • Lafe, C.L., Pacheco, M.M., & Newell, K.M. (2016a). Adapting relative phase of bimanual isometric force coordination through scaling visual information intermittency. Human Movement Science, 47, 186–196. https://doi.org/10.1016/j.humov.2016.03.011
  • Lafe, C.L., Pacheco, M.M., & Newell, K.M. (2016b). Bimanual coordination and the intermittency of visual information in isometric force tracking. Experimental Brain Research, 234, 2025–2034. https://doi.org/10.1007/s00221-016-4606-8
  • Lu, Z.-L., Neuse, J., Madigan, S. & Dosher, B.A. (2005). Fast decay of iconic memory in observers with mild cognitive impairments. Proceedings of the National Academy of Sciences, 102, 1797–1802. https://doi.org/10.1073/pnas.0408402102
  • Lyons, J., Fontaine, R., & Elliott, D. (1997). I lost it in the lights: The effects of predictable and variable intermittent vision on unimanual catching. Journal of Motor Behavior, 29, 113–118. https://doi.org/10.1080/00222899709600826
  • Lyons, J., Hansen, S., Hurding, S., & Elliott, D. (2006). Optimizing rapid aiming behaviour: movement kinematics depend on the cost of corrective modifications.Experimental Brain Research, 174, 95–100. https://doi.org/10.1007/s00221-006-0426-6
  • Mackrous, I. & Proteau, L. (2007). Specificity of practice results from differences in movement planning strategies. Experimental Brain Research, 183, 181–193. https://doi.org/10.1007/s00221-007-1031-z
  • Melmoth, D., & Grant, S. (2006). Advantages of binocular vision for the control of reaching and grasping. Experimental Brain Research, 171, 371–388. https://doi.org/10.1007/s00221-005-0273-x
  • Melmoth, D.R., Storoni, M., Todd, G., Finlay, A.L., & Grant, S. (2007). Dissociation between vergence and binocular disparity cues in the control of prehension. Experimental Brain Research, 183, 283–298. https://doi.org/10.1007/s00221-007-1041-x
  • Milgram, P. (1987). A spectacle-mounted liquid-crystal tachistoscope. Behavior Research Methods, Instruments and Computers, 19, 449–456. https://doi.org/10.3758/BF03205613
  • Mitroff, S.R., Friesen, P., Bennett, D., Yoo, H. & Reichow, A.W. (2013). Enhancing ice hockey skills through stroboscopic visual training. Athletic Training & Sport Health Care, 5, 1–5.
  • Olivier, I., Weeks, D.J., Lyons, J., Ricker, K.L., & Elliott, D. (1998). Monocular and binocular vision in one-handed ball catching: Interocular integration. Journal of Motor Behavior, 30, 343–351. https://doi.org/10.1080/00222899809601348
  • Owsley, C., Sekuler, R., & Siemsen, D. (1983). Contrast sensitivity throughout adulthood. Vision Research, 23, 689–699. https://doi.org/10.1016/0042-6989(83)90210-9
  • Pew, R.W. (1966). Acquisition of hierarchical control over the temporal organization of a skill. Journal of Experimental Psychology, 71, 764–771. https://doi.org/10.1037/h0023100
  • Proteau, L., Marteniuk, R.G., Girouard, Y., & Dugas, C. (1987). On the type of information used to control and learn an aiming movement after moderate and extensive practice. Human Movement Science, 6, 181–199. https://doi.org/10.1016/0167-9457(87)90011-X
  • Proteau, L., Marteniuk, R.G. & Lévesque, L. (1992). A sensorimotor basis for motor learning: Evidence indicating specificity of practice. The Quarterly Journal of Experimental Psychology A, 44(3), 557–575. https://doi.org/10.1080/14640749208401298
  • Robertson, S., Collins, J., Elliott, D., & Starkes, J. (1994). The influence of skill and intermittent vision on dynamic balance. Journal of Motor Behavior, 26, 333–339. https://doi.org/10.1080/00222895.1994.9941689
  • Robin, C., Toussaint, L., Blandin, Y. & Proteau, L. (2005). Specificity of learning in a video-aiming task: Modifying the salience of dynamic visual cues. Journal of Motor Behavior, 37, 367–376. https://doi.org/10.3200/JMBR.37.5.367-376
  • Savelsbergh, G.J.P., Whiting, H.T.A., & Bootsma, R.J. (1991). Grasping Tau. Journal of Experimental Psychology: Human Perception and Performance, 17, 315–322. https://doi.org/10.1037/0096-1523.17.2.315
  • Schmidt, R.A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82, 225–260. https://doi.org/10.1037/h0076770
  • Schmidt, R.A. (1976). Control processes in motor skills. Exercise and Sport Sciences Reviews, 4, 229–261.
  • Schmidt, R.A. & McCabe, J.F. (1976). Motor program utilization over extended practice. Journal of Human Movement Studies, 2, 239–247.
  • Slifkin, A. B., Vaillancourt, D. E., & Newell, K. M. (2000). Intermittency in continuous isometric force production. Journal of Neurophysiology, 84, 1708–1718.
  • Smith, T.Q. & Mitroff, S.R. (2012). Stroboscopic training enhances anticipation timing. International Journal of Exercise Science, 5, 344–353.
  • Sosnoff, J. J., & Newell, K. M. (2005a). Intermittent visual information and the multiple time scales of visual motor control of continuous isometric force production. Perception and Psychophysics, 67, 335–344. https://doi.org/10.3758/bf03206496
  • Sosnoff, J. J., & Newell, K. M. (2005b). Intermittency of visual information and the frequency of rhythmical force production. Journal of Motor Behavior, 37, 325–334. https://doi.org/10.3200/JMBR.37.4.325-336
  • Sosnoff, J. J., & Newell, K. M. (2006). Aging, visual intermittency and variability in isometric force output. Journal of Gerontology: B. Psychological Sciences, 61, P117–P124. https://doi.org/10.1093/geronb/61.2.P117
  • Sperling, G. (1960). The information available in brief visual presentation. Psychological Monographs, 74 (11, Whole No. 498), 1–29. https://doi.org/10.1037/h0093759
  • Steenhuis, R.E. & Goodale, M.A. (1988). The effects of time and distance on accuracy of target-directed locomotion: Does an accurate short term memory for spatial location exist? Journal of Motor Behavior, 20, 399–415. https://doi.org/10.1080/00222895.1988.10735454
  • Thomson, J.A. (1980). How do we use visual information to control locomotion? Trends in Neuroscience, 3 247–249. https://doi.org/10.1016/0166-2236(80)90092-2
  • Thomson, J.A. (1983). Is continuous visual monitoring necessary in visually guided locomotion? Journal of Experimental Psychology: Human Perception and Performance, 9, 427–443. https://doi.org/10.1037/0096-1523.9.3.427
  • Tremblay, L., Crainic, V.A., de Grobois, J., Bhattacharjee, A., Kennedy, A., Hansen, S., & Welsh, T.N. (2017). An optimal velocity for online limb-target regulation processes? Experimental Brain Research, 235, 29–40. https://doi.org/10.1007/s00221-016-4770-x
  • Vaillancourt, D., Slifkin, A. B., & Newell, K. M. (2001). Intermittency in the visual control of force in Parkinson's disease. Experimental Brain Research, 138, 118–127. https://doi.org/10.1007/s002210100699
  • Von Noorden, G.K. & Burian, H.M. (1959). Visual acuity in normal and amblyopic patients under reduced illumination. I. Behavior of visual acuity with and without neutral density filter. AMA Archives of Ophthalmology, 61, 533–535. https://doi.org/10.1001/archopht.1959.00940090535005
  • Wilkins, L. & Appelbaum, L.G. (2019). An early review of stroboscopic visual training: Insights, challenges and accomplishments to guide future studies. International Review of Sport and Exercise Psychology, 1–16. https://doi.org/10.1080/1750984X.2019.1582081
  • Wilkins, L., & Gray, R. (2015). Effects of stroboscopic visual training on visual attention, motion perception, and catching performance. Perceptual and Motor Skills, 121, 57–79. https://doi.org/10.2466/22.25.PMS.121c11x0
  • Wilkins, L., Nelson, C., & Tweddle, S. (2018). Stroboscopic visual training: A pilot study with three elite youth football goalkeepers. Journal of Cognitive Enhancement, 2(1), 3–11. https://doi.org/10.1007/s41465-017-0038-z
  • Woodworth, R.S. (1899). The accuracy of voluntary movement. Psychological Review, 3, (Monograph Supplement), 1–119. https://doi.org/10.1037/h0092992

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.