283
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Sports-Related Motor Processing at Different Rates of Force Development

, , , &
Pages 588-598 | Received 02 Mar 2021, Accepted 20 Jan 2022, Published online: 09 Feb 2022

References

  • Alegre, M., Labarga, A., Gurtubay, I. G., Iriarte, J., Malanda, A., & Artieda, J. (2003). Movement-related changes in cortical oscillatory activity in ballistic, sustained and negative movements. Experimental Brain Research, 148(1), 17–25.
  • Allen, D. P., & MacKinnon, C. D. (2010). Time-frequency analysis of movement-related spectral power in EEG during repetitive movements: A comparison of methods. Journal of Neuroscience Methods, 186(1), 107–115.
  • Aoki, F., Fetz, E. E., Shupe, L., Lettich, E., & Ojemann, G. A. (1999). Increased gamma-range activity in human sensorimotor cortex during performance of visuomotor tasks. [Database].
  • Archambault, P. S., Ferrari-Toniolo, S., Caminiti, R., & Battaglia-Mayer, A. (2015). Visually-guided correction of hand reaching movements: The neurophysiological bases in the cerebral cortex. Vision Research, 110(Pt B), 244–256.
  • Babiloni, C., Del Percio, C., Iacoboni, M., Infarinato, F., Lizio, R., Marzano, N., Crespi, G., Dassù, F., Pirritano, M., Gallamini, M., & Eusebi, F. (2008). Golf putt outcomes are predicted by sensorimotor cerebral EEG rhythms. The Journal of Physiology, 586(1), 131–139.
  • Bacigalupo, F., & Luck, S. J. (2019). Lateralized suppression of alpha-band EEG activity as a mechanism of target processing. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 39(5), 900–917. https://doi.org/10.1523/JNEUROSCI.0183-18.2018
  • Benecke, R., Dick, J. P. R., Rothwell, J. C., Day, B. L., & Marsden, C. D. (1985). Increase of the Bereitschaftspotential in simultaneous and sequential movements. Neuroscience Letters, 62 (3), 347–352. DOI: 10.1016/0304-3940(85)90573-7.
  • Brinkman, L., Stolk, A., Dijkerman, H. C., Lange, F. P., & Toni, I. (2014). Distinct roles for alpha- and beta-band oscillations during mental simulation of goal-directed actions. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 34(44), 14783–14792.
  • Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science (New York, N.Y.), 304(5679), 1926–1929.
  • Buzsáki, G., & Watson, B. O. (2012). Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues in Clinical Neuroscience, 14(4), 345–367.
  • Cheron, G., Márquez-Ruiz, J., & Dan, B. (2015). Oscillations, timing, plasticity, and learning in the cerebellum. Cerebellum (London, England), 15(2), 122–138.
  • Cheron, G., Petit, G., Cheron, J., Leroy, A., Cebolla, A., & Cevallos, C. (2016). Brain oscillations in sport: toward EEG biomarkers of performance. Frontiers in Psychology, 7, S, 246. https://doi.org/10.3389/fpsyg.2016.00246
  • Chung, J. W., Ofori, E., Misra, G., Hess, C. W., & Vaillancourt, D. E. (2017). Beta-band activity and connectivity in sensorimotor and parietal cortex are important for accurate motor performance. NeuroImage, 144(Pt A), 164–173.
  • Courtemanche, R., Pellerin, J.-P., & Lamarre, Y. (2002). Local field potential oscillations in primate cerebellar cortex: modulation during active and passive expectancy. Journal of Neurophysiology, 88(2), 771–782.
  • Deecke, L., Grözinger, B., & Kornhuber, H. H. (1976). Voluntary finger movement in man: cerebral potentials and theory. In Biological Cybernetics, 23 (2), 99–119.
  • Dipoppa, M., & Gutkin, B. S. (2013). Flexible frequency control of cortical oscillations enables computations required for working memory. Proceedings of the National Academy of Sciences of the United States of America, 110(31), 12828–12833.
  • Donoghue, J. P., Sanes, J. N., Hatsopoulos, N. G., & Gaál, G. (1998). Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. Journal of Neurophysiology, 79 (1), 159–173. DOI: 10.1152/jn.1998.79.1.159.
  • Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews. Neuroscience, 2(10), 704–716.
  • Flüthmann, N., Kato, K., Bloch, O., Kanosue, K., & Vogt, T. (2019). Effects of longer vs. shorter timed movement sequences on alpha motor inhibition when combining contractions and relaxations. Experimental Brain Research, 237(1), 101–109.
  • Franklin, D. W., & Wolpert, D. M. (2011). Computational mechanisms of sensorimotor control. Neuron, 72(3), 425–442.
  • Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9(10), 474–480. https://doi.org/10.1016/j.tics.2005.08.011
  • Gerloff, C., Richard, J., Hadley, J., Schulman, A. E., Honda, M., & Hallett, M. (1998). Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain, 121 (8), 1513–1531. https://doi.org/10.1093/brain/121.8.1513
  • Gratton, G., Coles, M. G. H., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55(4), 468–484. https://doi.org/10.1016/0013-4694(83)90135-9
  • Gross, J., Timmermann, L., Kujala, J., Dirks, M., Schmitz, F., Salmelin, R., & Schnitzler, A. (2002). The neural basis of intermittent motor control in humans. Proceedings of the National Academy of Sciences of the United States of America, 99(4), 2299–2302.
  • Gruber, T., Keil, A., & Müller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. Neuroscience Letters, 316(1), 29–32. https://doi.org/10.1016/S0304-3940(01)02361-8
  • Gruber, T., & Müller, M. M. (2006). Oscillatory brain activity in the human EEG during indirect and direct memory tasks. Brain Research, 1097(1), 194–204.
  • Gwin, T., Gramann, K., Makeig, S., & Ferris, P. (2010). Removal of movement artifact from high-density EEG recorded during walking and running. Journal of Neurophysiology, 103(6), 3526–3534.
  • Hermens, H. J. (1999). European recommendations for surface ElectroMyoGraphy. Results of the SENIAM project. Enschede: Roessingh Research and Development (SENIAM, 8).
  • Hosaka, R., Nakajima, T., Aihara, K., Yamaguchi, Y., & Mushiake, H. (2016). The suppression of beta oscillations in the primate supplementary motor complex reflects a volatile state during the updating of action sequences. Cerebral Cortex (New York, N.Y. : 1991), 26(8), 3442–3452.
  • Jensen, O., Kaiser, J., & Lachaux, J.-P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30(7), 317–324.
  • Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neuroscience, 4, 186.
  • Kato, K., Vogt, T., & Kanosue, K. (2019). Brain activity underlying muscle relaxation. Frontiers in Physiology, 10, 1457.
  • Kilavik, B. E., Zaepffel, M., Brovelli, A., MacKay, W. A., & Riehle, A. (2013). The ups and downs of β oscillations in sensorimotor cortex. Experimental Neurology, 245, 15–26.
  • Klimesch, W. (2012). α-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12), 606–617.
  • Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53(1), 63–88. https://doi.org/10.1016/j.brainresrev.2006.06.003
  • Kornhuber, H. H., & Deecke, L. (1964). Hirnpotentialänderungen beim Menschen vor und nach Willkürbewegungen, dargestellt mit Magnetbandspeicherung und Rückwärtsanalyse. In Pflügers Arch. 281, 52.
  • Kuo, C.-C., Luu, P., Morgan, K. K., Dow, M., Davey, C., Song, J., Malony, A. D., & Tucker, D. M. (2014). Localizing movement-related primary sensorimotor cortices with multi-band EEG frequency changes and functional MRI. PloS One, 9(11), e112103.
  • Lebedev, M. A., & Nelson, R. J. (1995). Rhythmically firing (20–50 Hz) neurons in monkey primary somatosensory cortex: Activity patterns during initiation of vibratory-cued hand movements. Journal of Computational Neuroscience, 2(4), 313–334.
  • Lebedev, M. A., & Wise, S. P. (2000). Oscillations in the premotor cortex: Single-unit activity from awake, behaving monkeys. Experimental Brain Research, 130(2), 195–215.
  • Masaki, H., Takasawa, N., & Yamazaki, K. (1998). Enhanced negative slope of the readiness potential preceding a target force production task. In Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 108 (4), 390–397. https://doi.org/10.1016/S0168-5597(98)00019-7
  • Ofori, E., Coombes, S. A., & Vaillancourt, D. E. (2015). 3D Cortical electrophysiology of ballistic upper limb movement in humans. NeuroImage, 115, 30–41.
  • Pfurtscheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 110(11), 1842–1857. https://doi.org/10.1016/S1388-2457(99)00141-8
  • Ramachandran, V. S. (2002). Encyclopedia of the human brain. Academic Press.
  • Ramos-Murguialday, A., & Birbaumer, N. (2015). Brain oscillatory signatures of motor tasks. Journal of Neurophysiology, 113(10), 3663–3682. https://doi.org/10.1152/jn.00467.2013
  • Rosenbaum, D. A. (1991). Human motor control (Vol. 1. Aufl. ed.). Elsevier Reference Monographs.
  • Shibasaki, H., & Hallett, M. (2006). What is the bereitschaftspotential? In Clinical Neurophysiology, 117 (11)S., 2341–2356. https://doi.org/10.1016/j.clinph.2006.04.025
  • Siemionow, V., Yue, G. H., Ranganathan, V. K., Liu, J. Z., & Sahgal, V. (2000). Relationship between motor activity-related cortical potential and voluntary muscle activation. Experimental Brain Research, 133(3), 303–311.
  • Slobounov, S., Hallett, M., & Newell, K. M. (2004). Perceived effort in force production as reflected in motor-related cortical potentials. In Clinical Neurophysiology, 115 (10), 2391–2402. https://doi.org/10.1016/j.clinph.2004.05.021
  • Spraker, M. B., Corcos, D. M., & Vaillancourt, D. E. (2009). Cortical and subcortical mechanisms for precisely controlled force generation and force relaxation. In Cerebral Cortex, (New York, N.Y.: 1991) 19 (11), 2640–2650. https://doi.org/10.1093/cercor/bhp015
  • Sugata, H., Yagi, K., Yazawa, S., Nagase, Y., Tsuruta, K., Ikeda, T., Nojima, I., Hara, M., Matsushita, K., Kawakami, K., & Kawakami, K. (2020). Role of beta-band resting-state functional connectivity as a predictor of motor learning ability. In: NeuroImage, 210(S), 116562. DOI: 10.1016/j.neuroimage.2020.116562.
  • Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Permier, J. (1997). Oscillatory γ-band (30–70 Hz) activity induced by a visual search task in humans. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 17(2), 722–734.
  • Tallon-Baudry, C., Bertrand, O., Hénaff, M.-A., Isnard, J., & Fischer, C. (2005). Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Cerebral Cortex (New York, N.Y. : 1991), 15(5), 654–662.
  • Vogt, T., Kato, K., Flüthmann, N., Bloch, O., Nakata, H., & Kanosue, K. (2018). Performance control in one consecutive motor task sequence – Αpproaching central neuronal motor behaviour preceding isometric contraction onsets and relaxation offsets at lower distinct torques. Journal of Musculoskeletal & Neuronal Interactions, 18 (1), 1–8.
  • Vogt, T., Kato, K., Schneider, S., Türk, S., & Kanosue, K. (2017). Central neuronal motor behaviour in skilled and less skilled novices – approaching sports-specific movement techniques. Human Movement Science, 52, 151–159. https://doi.org/10.1016/j.humov.2017.02.003
  • Woertz, M., Pfurtscheller, G., & Klimesch, W. (2004). Alpha power dependent light stimulation: dynamics of event-related (de)synchronization in human electroencephalogram. Brain Research. Cognitive Brain Research, 20(2), 256–260.
  • Zanto, T. P., Rubens, M. T., Thangavel, A., & Gazzaley, A. (2011). Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory. Nature Neuroscience, 14(5), 656–661

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.