541
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Determining the Corticospinal Responses and Cross-Transfer of Ballistic Motor Performance in Young and Older Adults: A Systematic Review and Meta-Analysis

, , , , , , ORCID Icon & show all
Pages 763-786 | Received 20 Aug 2021, Accepted 30 Mar 2022, Published online: 18 Apr 2022

REFERENCES

  • Alibazi, R. J., Pearce, A. J., Rostami, M., Frazer, A. K., Brownstein, C., & Kidgell, D. J. (2021). Determining the intracortical responses after a single session of aerobic exercise in young healthy individuals: A systematic review and best evidence synthesis. Journal of Strength and Conditioning Research, 35(2), 562–575. https://doi.org/10.1519/JSC.0000000000003884
  • Bashir, S., Mizrahi, I., Weaver, K., Fregni, F., & Pascual-Leone, A. (2010). Assessment and modulation of neural plasticity in rehabilitation with transcranial magnetic stimulation. PM & R: The Journal of Injury, Function, and Rehabilitation, 2(12), S253–S268. https://doi.org/10.1016/j.pmrj.2010.10.015
  • Berghuis, K. M., Semmler, J. G., Opie, G. M., Post, A. K., & Hortobágyi, T. (2017). Age-related changes in corticospinal excitability and intracortical inhibition after upper extremity motor learning: A systematic review and meta-analysis. Neurobiology of Aging, 55, 61–71. https://doi.org/10.1016/j.neurobiolaging.2017.03.024
  • Bernard, J. A., & Seidler, R. D. (2012). Evidence for motor cortex dedifferentiation in older adults. Neurobiology of Aging, 33(9), 1890–1899. https://doi.org/10.1016/j.neurobiolaging.2011.06.021
  • Bestmann, S. (2012). Functional modulation of primary motor cortex during action selection. In R. Chen & J. C. Rothwell (Eds.), Cortical connectivity (pp. 183–206). Springer.
  • Bestmann, S., & Krakauer, J. W. (2015). The uses and interpretations of the motor-evoked potential for understanding behaviour. Experimental Brain Research, 233(3), 679–689. https://doi.org/10.1007/s00221-014-4183-7
  • Bodwell, J. A., Mahurin, R. K., Waddle, S., Price, R., & Cramer, S. C. (2003). Age and features of movement influence motor overflow. Journal of the American Geriatrics Society, 51(12), 1735–1739. https://doi.org/10.1046/j.1532-5415.2003.51557.x
  • Bonato, C., Zanette, G., Manganotti, P., Tinazzi, M., Bongiovanni, G., Polo, A., & Fiaschi, A. (1996). Direct’and ‘crossed’modulation of human motor cortex excitability following exercise. Neuroscience Letters, 216(2), 97–100.
  • Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2010). A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods, 1(2), 97–111. https://doi.org/10.1002/jrsm.12
  • Calvert, G., & Carson, R. G. (2022). Neural mechanisms mediating cross education: With additional considerations for the ageing brain. Neuroscience and Biobehavioral Reviews, 132, 260–288. https://doi.org/10.1016/j.neubiorev.2021.11.025
  • Carroll, T. J., Lee, M., Hsu, M., & Sayde, J. (2008). Unilateral practice of a ballistic movement causes bilateral increases in performance and corticospinal excitability. Journal of Applied Physiology (Bethesda, Md. : 1985), 104(6), 1656–1664. https://doi.org/10.1152/japplphysiol.01351.2007
  • Chen, R. (2004). Interactions between inhibitory and excitatory circuits in the human motor cortex. Experimental Brain Research, 154(1), 1–10. https://doi.org/10.1007/s00221-003-1684-1
  • Cirillo, J., Rogasch, N. C., & Semmler, J. G. (2010). Hemispheric differences in use-dependent corticomotor plasticity in young and old adults. Experimental Brain Research, 205(1), 57–68. https://doi.org/10.1007/s00221-010-2332-1
  • Classen, J., Liepert, J., Wise, S. P., Hallett, M., & Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. Journal of Neurophysiology, 79(2), 1117–1123. https://doi.org/10.1152/jn.1998.79.2.1117
  • Cohen, J. (1998). Statistical power analysis for the behavioural sciences (2nd ed.). Lawrence Erlbaum Associates.
  • Dickins, D. S., Sale, M. V., & Kamke, M. R. (2015). Intermanual transfer and bilateral cortical plasticity is maintained in older adults after skilled motor training with simple and complex tasks. Frontiers in Aging Neuroscience, 7, 73. https://doi.org/10.3389/fnagi.2015.00073
  • Dolcos, F., Rice, H. J., & Cabeza, R. (2002). Hemispheric asymmetry and aging: Right hemisphere decline or asymmetry reduction. Neuroscience and Biobehavioral Reviews, 26(7), 819–825. https://doi.org/10.1016/s0149-7634(02)00068-4
  • Downs, S. H., & Black, N. (1998). The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. Journal of Epidemiology and Community Health, 52(6), 377–384. https://doi.org/10.1136/jech.52.6.377
  • Duque, J., Mazzocchio, R., Stefan, K., Hummel, F., Olivier, E., & Cohen, L. G. (2008). Memory formation in the motor cortex ipsilateral to a training hand. Cerebral Cortex (New York, N.Y. : 1991), 18(6), 1395–1406. https://doi.org/10.1093/cercor/bhm173
  • Fling, B. W., Kwak, Y., Peltier, S. J., & Seidler, R. D. (2012). Differential relationships between transcallosal structural and functional connectivity in young and older adults. Neurobiology of Aging, 33(10), 2521–2526. https://doi.org/10.1016/j.neurobiolaging.2011.11.018
  • Frazer, A. K., Pearce, A. J., Howatson, G., Thomas, K., Goodall, S., & Kidgell, D. J. (2018). Determining the potential sites of neural adaptation to cross-education: Implications for the cross-education of muscle strength . European Journal of Applied Physiology, 118(9), 1751–1772. https://doi.org/10.1007/s00421-018-3937-5
  • Freitas, C., Farzan, F., & Pascual-Leone, A. (2013). Assessing brain plasticity across the lifespan with transcranial magnetic stimulation: Why, how, and what is the ultimate goal? Frontiers in Neuroscience, 7, 42. https://doi.org/10.3389/fnins.2013.00042
  • Fujiyama, H., Garry, M. I., Levin, O., Swinnen, S. P., & Summers, J. J. (2009). Age-related differences in inhibitory processes during interlimb coordination. Brain Research, 1262, 38–47. https://doi.org/10.1016/j.brainres.2009.01.023
  • Garry, M. I., Kamen, G., & Nordstrom, M. A. (2004). Hemispheric differences in the relationship between corticomotor excitability changes following a fine-motor task and motor learning. Journal of Neurophysiology, 91(4), 1570–1578. https://doi.org/10.1152/jn.00595.2003
  • Giesebrecht, S., Martin, P. G., Gandevia, S. C., & Taylor, J. L. (2011). Altered corticospinal transmission to the hand after maximum voluntary efforts. Muscle & Nerve, 43(5), 679–687.
  • Goble, D. J., Coxon, J. P., Van Impe, A., De Vos, J., Wenderoth, N., & Swinnen, S. P. (2010). The neural control of bimanual movements in the elderly: Brain regions exhibiting age-related increases in activity, frequency-induced neural modulation, and task-specific compensatory recruitment . Human Brain Mapping, 31(8), 1281–1295. https://doi.org/10.1002/hbm.20943
  • Green, L. A., & Gabriel, D. A. (2018). The effect of unilateral training on contralateral limb strength in young, older, and patient populations: A meta-analysis of cross education. Physical Therapy Reviews, 23(4-5), 238–249. https://doi.org/10.1080/10833196.2018.1499272
  • Green, L. A., & Gabriel, D. A. (2018). The effect of unilateral training on contralateral limb strength in young, older, and patient populations: A meta-analysis of cross education. Physical Therapy Reviews, 23(4–5), 238–249. https://doi.org/10.1080/10833196.2018.1499272
  • Guye, M., Parker, G. J., Symms, M., Boulby, P., Wheeler-Kingshott, C. A., Salek-Haddadi, A., Barker, G. J., & Duncan, J. S. (2003). Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo. NeuroImage, 19(4), 1349–1360. https://doi.org/10.1016/S1053-8119(03)00165-4
  • Hallett, M. (2000). Transcranial magnetic stimulation and the human brain. Nature, 406(6792), 147–150. https://doi.org/10.1038/35018000
  • Hammond, G. (2002). Correlates of human handedness in primary motor cortex: A review and hypothesis. Neuroscience and Biobehavioral Reviews, 26(3), 285–292. https://doi.org/10.1016/s0149-7634(02)00003-9
  • Hammond, G. R., & Vallence, A. M. (2006). Asymmetrical facilitation of motor-evoked potentials following motor practice. Neuroreport, 17(8), 805–807. https://doi.org/10.1097/01.wnr.0000220125.55855.98
  • Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta- analyses. BMJ (Clinical Research ed.), 327(7414), 557–560.
  • Higgins, J. P. T., Green, S. (2011). Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]. The Cochrane Collaboration. www.cochrane-handbook.org.
  • Hinder, M. R., Carroll, T. J., & Summers, J. J. (2013a). Transfer of ballistic motor skill between bilateral and unilateral contexts in young and older adults: Neural adaptations and behavioral implications. Journal of Neurophysiology, 109(12), 2963–2971. https://doi.org/10.1152/jn.00535.2012
  • Hinder, M. R., Carroll, T. J., & Summers, J. J. (2013b). Inter-limb transfer of ballistic motor skill following non-dominant limb training in young and older adults. Experimental Brain Research, 227(1), 19–29. https://doi.org/10.1007/s00221-013-3481-9
  • Hinder, M. R., Schmidt, M. W., Garry, M. I., Carroll, T. J., & Summers, J. J. (2011). Absence of cross-limb transfer of performance gains following ballistic motor practice in older adults. Journal of Applied Physiology, 110(1), 166–175. https://doi.org/10.1152/japplphysiol.00958.2010
  • Hoy, K. E., Fitzgerald, P. B., Bradshaw, J. L., Armatas, C. A., & Georgiou-Karistianis, N. (2004). Investigating the cortical origins of motor overflow. Brain Research. Brain Research Reviews, 46(3), 315–327. https://doi.org/10.1016/j.brainresrev.2004.07.013
  • Inuggi, A., Amato, N., Magnani, G., González-Rosa, J. J., Chieffo, R., Comi, G., & Leocani, L. (2011). Cortical control of unilateral simple movement in healthy aging. Neurobiology of Aging, 32(3), 524–538. https://doi.org/10.1016/j.neurobiolaging.2009.02.020
  • Kidgell, D. J., Bonanno, D. R., Frazer, A. K., Howatson, G., & Pearce, A. J. (2017a). Corticospinal responses following strength training: A systematic review and meta-analysis. The European Journal of Neuroscience, 46(11), 2648–2661. https://doi.org/10.1111/ejn.13710
  • Kidgell, D. J., Frazer, A. K., & Pearce, A. J. (2017b). The effect of task complexity influencing bilateral transfer. International Journal of Exercise Science, 10(8), 1174–1183.
  • Klein, C. S., Marsh, G. D., Petrella, R. J., & Rice, C. L. (2003). Muscle fiber number in the biceps brachii muscle of young and old men. Muscle & Nerve. Official Journal of the American Association of Electrodiagnostic Medicine, 28(1), 62–68.
  • Kossev, A. R., Schrader, C., Däuper, J., Dengler, R., & Rollnik, J. D. (2002). Increased intracortical inhibition in middle-aged humans; a study using paired-pulse transcranial magnetic stimulation. Neuroscience Letters, 333(2), 83–86. https://doi.org/10.1016/S0304-3940(02)00986-2
  • Kujirai, T., Caramia, M. D., Rothwell, J. C., Day, B. L., Thompson, P. D., Ferbert, A., Wroe, S., Asselman, P., & Marsden, C. D. (1993). Corticocortical inhibition in human motor cortex. The Journal of Physiology, 471(1), 501–519. https://doi.org/10.1113/jphysiol.1993.sp019912
  • Langan, J., Peltier, S., Bo, J., Fling, B. W., Welsh, R. C., & Seidler, R. D. (2010). Functional implications of age differences in motor system connectivity. Frontiers in Systems Neuroscience, 4, 17. https://doi.org/10.3389/fnsys.2010.00017
  • Lauber, B., Lundbye-Jensen, J., Keller, M., Gollhofer, A., Taube, W., & Leukel, C. (2013). Cross-limb interference during motor learning. PloS One, 8(12), e81038. https://doi.org/10.1371/journal.pone.0081038
  • Lee, M., Hinder, M. R., Gandevia, S. C., & Carroll, T. J. (2010). The ipsilateral motor cortex contributes to cross-limb transfer of performance gains after ballistic motor practice . The Journal of Physiology, 588(Pt 1), 201–212. https://doi.org/10.1113/jphysiol.2009.183855
  • Leung, M., Rantalainen, T., Teo, W. P., & Kidgell, D. (2015b). Motor cortex excitability is not differentially modulated following skill and strength training. Neuroscience, 305, 99–108. https://doi.org/10.1016/j.neuroscience.2015.08.007
  • Leung, M., Rantalainen, T., Teo, W. P., & Kidgell, D. (2017). The corticospinal responses of metronome-paced, but not self-paced strength training are similar to motor skill training. European Journal of Applied Physiology, 117(12), 2479–2492. https://doi.org/10.1007/s00421-017-3736-4
  • Leung, M., Rantalainen, T., Teo, W. P., & Kidgell, D. (2018). The ipsilateral corticospinal responses to cross-education are dependent upon the motor-training intervention. Experimental Brain Research, 236(5), 1331–1346. https://doi.org/10.1007/s00221-018-5224-4
  • Leung, M., Rantalainen, T., Teo, W., & Kidgell, D. (2015a). Motor skill training and strength training are associated with the same plastic changes in the central nervous system. Journal of Science and Medicine in Sport, 19, e19. https://doi.org/10.1016/j.jsams.2015.12.423
  • Liepert, J., Classen, J., Cohen, L. G., & Hallett, M. (1998). Task-dependent changes of intracortical inhibition. Experimental Brain Research, 118(3), 421–426. https://doi.org/10.1007/s002210050296
  • Manca, A., Dragone, D., Dvir, Z., & Deriu, F. (2017). Cross-education of muscular strength following unilateral resistance training: A meta-analysis. European Journal of Applied Physiology, 117(11), 2335–2354. https://doi.org/10.1007/s00421-017-3720-z
  • Manca, A., Hortobágyi, T., Carroll, T. J., Enoka, R. M., Farthing, J. P., Gandevia, S. C., Kidgell, D. J., Taylor, J. L., & Deriu, F. (2021). Contralateral effects of unilateral strength and skill training: Modified Delphi consensus to establish key aspects of cross-education. Sports Medicine (Auckland, N.Z.), 51(1), 11–20. https://doi.org/10.1007/s40279-020-01377-7
  • Manca, A., Hortobágyi, T., Rothwell, J., & Deriu, F. (2018). Neurophysiological adaptations in the untrained side in conjunction with cross-education of muscle strength: A systematic review and meta-analysis. Journal of Applied Physiology, 124(6), 1502–1518. https://doi.org/10.1152/japplphysiol.01016.2017
  • Maniar, N., Shield, A. J., Williams, M. D., Timmins, R. G., & Opar, D. A. (2016). Hamstring strength and flexibility after hamstring strain injury: A systematic review and meta-analysis. British Journal of Sports Medicine, 50(15), 909–920. https://doi.org/10.1136/bjsports-2015-095311
  • Mason, J., Frazer, A. K., Jaberzadeh, S., Ahtiainen, J. P., Avela, J., Rantalainen, T., Leung, M., & Kidgell, D. J. (2019). Determining the corticospinal responses to single bouts of skill and strength training. Journal of Strength and Conditioning Research, 33(9), 2299–2307. https://doi.org/10.1519/JSC.0000000000003266
  • McGinley, M., Hoffman, R. L., Russ, D. W., Thomas, J. S., & Clark, B. C. (2010). Older adults exhibit more intracortical inhibition and less intracortical facilitation than young adults. Experimental Gerontology, 45(9), 671–678. https://doi.org/10.1016/j.exger.2010.04.005
  • McNevin, N. H., Wulf, G., & Carlson, C. (2000). Effects of attentional focus, self-control, and dyad training on motor learning: Implications for physical rehabilitation. Physical Therapy, 80(4), 373–385. https://doi.org/10.1093/ptj/80.4.373
  • Muellbacher, W., Ziemann, U., Boroojerdi, B., Cohen, L., & Hallett, M. (2001). Role of the human motor cortex in rapid motor learning. Experimental Brain Research, 136(4), 431–438. https://doi.org/10.1007/s002210000614
  • Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Kofler, M., Facchini, S., Boroojerdi, B., Poewe, W., & Hallett, M. (2002). Early consolidation in human primary motor cortex. Nature, 415(6872), 640–644.
  • Neva, J. L., Brown, K. E., Mang, C. S., Francisco, B. A., & Boyd, L. A. (2017). An acute bout of exercise modulates both intracortical and interhemispheric excitability. The European Journal of Neuroscience, 45(10), 1343–1355. https://doi.org/10.1111/ejn.13569
  • Oliveri, M., Caltagirone, C., Filippi, M. M., Traversa, R., Cicinelli, P., Pasqualetti, P., & Rossini, P. M. (2000). Paired transcranial magnetic stimulation protocols reveal a pattern of inhibition and facilitation in the human parietal cortex. The Journal of Physiology, 529(2), 461–468. https://doi.org/10.1111/j.1469-7793.2000.00461.x
  • Oliviero, A., Profice, P., Tonali, P. A., Pilato, F., Saturno, E., Dileone, M., Ranieri, F., & Di Lazzaro, V. (2006). Effects of aging on motor cortex excitability. Neuroscience Research, 55(1), 74–77. https://doi.org/10.1016/j.neures.2006.02.002
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., & Moher, D. (2021). Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. Journal of Clinical Epidemiology, 134, 103–112.
  • Paizis, C., Skoura, X., Personnier, P., & Papaxanthis, C. (2014). Motor asymmetry attenuation in older adults during imagined arm movements. Frontiers in Aging Neuroscience, 6, 49. https://doi.org/10.3389/fnagi.2014.00049
  • Parikh, P. J., & Cole, K. J. (2012). Handling objects in old age: Forces and moments acting on the object. Journal of Applied Physiology (Bethesda, Md. : 1985), 112(7), 1095–1104. https://doi.org/10.1152/japplphysiol.01385.2011
  • Parikh, P. J., & Cole, K. J. (2013). Transfer of learning between hands to handle a novel object in old age. Experimental Brain Research, 227(1), 9–18. https://doi.org/10.1007/s00221-013-3451-2
  • Peinemann, A., Lehner, C., Conrad, B., & Siebner, H. R. (2001). Age-related decrease in paired-pulse intracortical inhibition in the human primary motor cortex. Neuroscience Letters, 313(1-2), 33–36. https://doi.org/10.1016/S0304-3940(01)02239-X
  • Perez, M. A., Tanaka, S., Wise, S. P., Sadato, N., Tanabe, H. C., Willingham, D. T., & Cohen, L. G. (2007). Neural substrates of intermanual transfer of a newly acquired motor skill. Current Biology: CB, 17(21), 1896–1902. https://doi.org/10.1016/j.cub.2007.09.058
  • Petersen, N. C., Butler, J. E., Taylor, J. L., & Gandevia, S. C. (2010). Probing the corticospinal link between the motor cortex and motoneurones: Some neglected aspects of human motor cortical function. Acta Physiologica (Oxford, England), 198(4), 403–416. https://doi.org/10.1111/j.1748-1716.2009.02066.x
  • Poh, E., Riek, S., & Carroll, T. J. (2013). Ipsilateral corticospinal responses to ballistic training are similar for various intensities and timings of TMS. Acta Physiologica (Oxford, England), 207(2), 385–396. https://doi.org/10.1111/apha.12032
  • Przybyla, A., Haaland, K. Y., Bagesteiro, L. B., & Sainburg, R. L. (2011). Motor asymmetry reduction in older adults. Neuroscience Letters, 489(2), 99–104. https://doi.org/10.1016/j.neulet.2010.11.074
  • Reissig, P., Stöckel, T., Garry, M. I., Summers, J. J., & Hinder, M. R. (2015). Age-specific effects of mirror-muscle activity on cross-limb adaptations under mirror and non-mirror visual feedback conditions. Frontiers in Aging Neuroscience, 7, 222. https://doi.org/10.3389/fnagi.2015.00222
  • Ridding, M. C., & Ziemann, U. (2010). Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects . The Journal of Physiology, 588(Pt 13), 2291–2304. https://doi.org/10.1113/jphysiol.2010.190314
  • Rogasch, N. C., Dartnall, T. J., Cirillo, J., Nordstrom, M. A., & Semmler, J. G. (2009). Corticomotor plasticity and learning of a ballistic thumb training task are diminished in older adults. Journal of Applied Physiology, 107(6), 1874–1883. https://doi.org/10.1152/japplphysiol.00443.2009
  • Rohatgi, A. (2020). WebPlotDigitizer version 4.4. https://automeris.io/WebPlotDigitizer.
  • Rosenkranz, K., Kacar, A., & Rothwell, J. C. (2007). Differential modulation of motor cortical plasticity and excitability in early and late phases of human motor learning. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(44), 12058–12066. https://doi.org/10.1523/JNEUROSCI.2663-07.2007
  • Rosenkranz, K., Williamon, A., & Rothwell, J. C. (2007b). Motorcortical excitability and synaptic plasticity is enhanced in professional musicians. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(19), 5200–5206. https://doi.org/10.1523/JNEUROSCI.0836-07.2007
  • Rozand, V., Senefeld, J. W., Sundberg, C. W., Smith, A. E., & Hunter, S. K. (2019). Differential effects of aging and physical activity on corticospinal excitability of upper and lower limb muscles. Journal of Neurophysiology, 122(1), 241–250. https://doi.org/10.1152/jn.00077.2019
  • Ruddy, K., Leemans, A., Woolley, D., Wenderoth, N., & Carson, R. (2017). Structural and functional cortical connectivity mediating cross education of motor function. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 37(10), 2555–2564. https://doi.org/10.1523/JNEUROSCI.2536-16.2017
  • Sale, M. V., & Semmler, J. G. (2005). Age-related differences in corticospinal control during functional isometric contractions in left and right hands. Journal of Applied Physiology, 99(4), 1483–1493. https://doi.org/10.1152/japplphysiol.00371.2005
  • Sanes, J. N., & Donoghue, J. P. (2000). Plasticity and primary motor cortex. Annual Review of Neuroscience, 23(1), 393–415. https://doi.org/10.1146/annurev.neuro.23.1.393
  • Sawaki, L., Yaseen, Z., Kopylev, L., & Cohen, L. G. (2003). Age-dependent changes in the ability to encode a novel elementary motor memory . Annals of Neurology, 53(4), 521–524. https://doi.org/10.1002/ana.10529
  • Scripture, E. W., Smith, T. L., & Brown, E. M. (1894). On the education of muscular control and power. Studies Yale Psychol Lab, 2, 114–119.
  • Seidler, R. D. (2007). Aging affects motor learning but not savings at transfer of learning. Learning & Memory, 14(1–2), 17–21.
  • Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin, J. T., Kwak, Y., & Lipps, D. B. (2010). Motor control and aging: Links to age-related brain structural, functional, and biochemical effects. Neuroscience and Biobehavioral Reviews, 34(5), 721–733. https://doi.org/10.1016/j.neubiorev.2009.10.005
  • Siddique, U., Rahman, S., Frazer, A. K., Pearce, A. J., Howatson, G., & Kidgell, D. J. (2020). Determining the sites of neural adaptations to resistance training: A systematic review and meta-analysis. Sports Medicine (Auckland, N.Z.), 50(6), 1107–1128. https://doi.org/10.1007/s40279-020-01258-z
  • Singh, A. M., Duncan, R. E., Neva, J. L., & Staines, W. R. (2014). Aerobic exercise modulates intracortical inhibition and facilitation in a nonexercised upper limb muscle. BMC Sports Science, Medicine and Rehabilitation, 6(1), 1–10. https://doi.org/10.1186/2052-1847-6-23
  • Smith, A. E., Goldsworthy, M. R., Garside, T., Wood, F. M., & Ridding, M. C. (2014). The influence of a single bout of aerobic exercise on short-interval intracortical excitability. Experimental Brain Research, 232(6), 1875–1882. https://doi.org/10.1007/s00221-014-3879-z
  • Smith, A. E., Ridding, M. C., Higgins, R. D., Wittert, G. A., & Pitcher, J. B. (2009). Age-related changes in short-latency motor cortex inhibition. Experimental Brain Research, 198(4), 489–500. https://doi.org/10.1007/s00221-009-1945-8
  • Stinear, C. M., & Byblow, W. D. (2003). Role of intracortical inhibition in selective hand muscle activation. Journal of Neurophysiology, 89(4), 2014–2020. https://doi.org/10.1152/jn.00925.2002
  • Stöckel, T., Carroll, T. J., Summers, J. J., & Hinder, M. R. (2016). Motor learning and cross-limb transfer rely upon distinct neural adaptation processes. Journal of Neurophysiology, 116(2), 575–586. https://doi.org/10.1152/jn.00225.2016
  • Tecchio, F., Zappasodi, F., Pasqualetti, P., De Gennaro, L., Pellicciari, M. C., Ercolani, M., Squitti, R., & Rossini, P. M. (2008). Age dependence of primary motor cortex plasticity induced by paired associative stimulation. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 119(3), 675–682. https://doi.org/10.1016/j.clinph.2007.10.023
  • Teixeira, L. A. (2000). Timing and force components in bilateral transfer of learning. Brain and Cognition, 44(3), 455–469. https://doi.org/10.1006/brcg.1999.1205
  • Teo, W. P., Rodrigues, J. P., Mastaglia, F. L., & Thickbroom, G. W. (2012). Post-exercise depression in corticomotor excitability after dynamic movement: A general property of fatiguing and non-fatiguing exercise. Experimental Brain Research, 216(1), 41–49. https://doi.org/10.1007/s00221-011-2906-6
  • Tormos, J. M., Cañete, C., Tarazona, F., Catalá, M. D., Pascual, A. P. L., & Pascual-Leone, A. (1997). Lateralized effects of self-induced sadness and happiness on corticospinal excitability. Neurology, 49(2), 487–491. https://doi.org/10.1212/wnl.49.2.487
  • Valero-Cabré, A., Amengual, J. L., Stengel, C., Pascual-Leone, A., & Coubard, O. A. (2017). Transcranial magnetic stimulation in basic and clinical neuroscience: A comprehensive review of fundamental principles and novel insights. Neuroscience & Biobehavioral Reviews, 83, 381–404. https://doi.org/10.1016/j.neubiorev.2017.10.006
  • Vandervoort, A. A. (2002). Aging of the human neuromuscular system. Muscle & Nerve, 25(1), 17–25. https://doi.org/10.1002/mus.1215
  • Voelcker-Rehage, C. (2008). Motor-skill learning in older adults—A review of studies on age-related differences. European Review of Aging and Physical Activity, 5(1), 5–16. https://doi.org/10.1007/s11556-008-0030-9
  • Walker, S., Monto, S., Piirainen, J. M., Avela, J., Tarkka, I. M., Parviainen, T. M., & Piitulainen, H. (2020). Older age increases the amplitude of muscle stretch-induced cortical beta-band suppression but does not affect rebound strength. Frontiers in Aging Neuroscience, 12, 117. https://doi.org/10.3389/fnagi.2020.00117
  • Ward, N. S. (2006). Compensatory mechanisms in the aging motor system. Ageing Research Reviews, 5(3), 239–254. https://doi.org/10.1016/j.arr.2006.04.003
  • Ward, N. S., & Frackowiak, R. S. J. (2003). Age-related changes in the neural correlates of motor performance . Brain: A Journal of Neurology, 126(Pt 4), 873–888. https://doi.org/10.1093/brain/awg071
  • Ward, N. S., Swayne, O. B., & Newton, J. M. (2008). Age-dependent changes in the neural correlates of force modulation: An fMRI study. Neurobiology of Aging, 29(9), 1434–1446. https://doi.org/10.1016/j.neurobiolaging.2007.04.017
  • Wu, T., & Hallett, M. (2005). The influence of normal human ageing on automatic movements. The Journal of Physiology, 562(Pt 2), 605–615. https://doi.org/10.1113/jphysiol.2004.076042
  • Ziemann, U., Muellbacher, W., Hallett, M., & Cohen, L. G. (2001). Modulation of practice-dependent plasticity in human motor cortex. Brain: A Journal of Neurology, 124(Pt 6), 1171–1181. https://doi.org/10.1093/brain/124.6.1171
  • Zoghi, M., Pearce, S. L., & Nordstrom, M. A. (2003). Differential modulation of intracortical inhibition in human motor cortex during selective activation of an intrinsic hand muscle. The Journal of Physiology, 550(Pt 3), 933–946. https://doi.org/10.1113/jphysiol.2003.042606

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.