171
Views
2
CrossRef citations to date
0
Altmetric
Short Communication

The Effect of Target Velocity on the Fast Corrective Response during Reaching Movement

, &
Pages 755-762 | Received 13 Sep 2021, Accepted 31 Mar 2022, Published online: 11 Apr 2022

REFERENCES

  • Abekawa, N., & Gomi, H. (2010). Spatial coincidence of intentional actions modulates an implicit visuomotor control. Journal of Neurophysiology, 103(5), 2717–2727. https://doi.org/10.1152/jn.91133.2008
  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
  • Bennett, S. J., Baures, R., Hecht, H., & Benguigui, N. (2010). Eye movements influence estimation of time-to-contact in prediction motion. Experimental Brain Research, 206(4), 399–407. https://doi.org/10.1007/S00221-010-2416-Y/FIGURES/4
  • Brenner, E., & Smeets, J. B. J. (1997). Fast responses of the human hand to changes in target position. Journal of Motor Behavior, 29(4), 297–310. https://doi.org/10.1080/00222899709600017
  • Brenner, E., Smeets, J. B. J., & de Lussanet, M. H. E. (1998). Hitting moving targets. Continuous control of the acceleration of the hand on the basis of the target's velocity. Experimental Brain Research, 122(4), 467–474. https://doi.org/10.1007/s002210050535
  • Day, B. L., & Lyon, I. N. (2000). Voluntary modification of automatic arm movements evoked by motion of a visual target. Experimental Brain Research, 130(2), 159–168. https://doi.org/10.1007/s002219900218
  • de Lussanet, M. H. E., Smeets, J. B. J., & Brenner, E. (2001). The effect of expectations on hitting moving targets: Influence of the preceding target's speed. Experimental Brain Research, 137(2), 246–248. https://doi.org/10.1007/s002210000607
  • Desmurget, M., Epstein, C. M., Turner, R. S., Prablanc, C., Alexander, G. E., & Grafton, S. T. (1999). Role of the posterior parietal cortex in updating reaching movements to a visual target. Nature Neuroscience, 2(6), 563–567. https://doi.org/10.1038/9219
  • Desmurget, M., & Grafton, S. (2000). Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Sciences, 4(11), 423–431. (https://doi.org/10.1016/S1364-6613(00)01537-0
  • Dimitriou, M., Wolpert, D. M., & Franklin, D. W. (2013). The temporal evolution of feedback gains rapidly update to task demands. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(26), 10898–10909. https://doi.org/10.1523/JNEUROSCI.5669-12.2013
  • Duffy, C. J., & Wurtz, R. H. (1991). Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. Journal of Neurophysiology, 65(6), 1346–1359. https://doi.org/10.1152/jn.1991.65.6.1346
  • Duffy, C. J., & Wurtz, R. H. (1997). Medial superior temporal area neurons respond to speed patterns in optic flow. The Journal of Neuroscience, 17(8), 2839–2851. https://doi.org/10.1523/JNEUROSCI.17-08-02839.1997
  • Dursteler, M. R., & Wurtz, R. H. (1988). Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST. Journal of Neurophysiology, 60(3), 940–965. https://doi.org/10.1152/jn.1988.60.3.940
  • Franklin, D. W., Franklin, S., & Wolpert, D. M. (2014). Fractionation of the visuomotor feedback response to directions of movement and perturbation. Journal of Neurophysiology, 112(9), 2218–2233. https://doi.org/10.1152/jn.00377.2013
  • Franklin, D. W., Reichenbach, A., Franklin, S., & Diedrichsen, J. (2016). Temporal evolution of spatial computations for visuomotor control. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 36(8), 2329–2341. https://doi.org/10.1523/JNEUROSCI.0052-15.2016
  • Gaveau, V., Pisella, L., Priot, A. E., Fukui, T., Rossetti, Y., Pélisson, D., & Prablanc, C. (2014). Automatic online control of motor adjustments in reaching and grasping. Neuropsychologia, 55(1), 25–40. https://doi.org/10.1016/j.neuropsychologia.2013.12.005
  • Gomi, H. (2008). Implicit online corrections of reaching movements. Current Opinion in Neurobiology, 18(6), 558–564. https://doi.org/10.1016/j.conb.2008.11.002
  • Gomi, H., Abekawa, N., & Nishida, S. (2006). Spatiotemporal tuning of rapid interactions between visual-motion analysis and reaching movement. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(20), 5301–5308. https://doi.org/10.1523/JNEUROSCI.0340-06.2006
  • Gritsenko, V., Yakovenko, S., & Kalaska, J. F. (2009). Integration of predictive feedforward and sensory feedback signals for online control of visually guided movement. Journal of Neurophysiology, 102(2), 914–930. https://doi.org/10.1152/jn.91324.2008
  • Izawa, J., & Shadmehr, R. (2008). On-line processing of uncertain information in visuomotor control. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(44), 11360–11368. https://doi.org/10.1523/JNEUROSCI.3063-08.2008
  • Kadota, K., & Gomi, H. (2010). Implicit visuomotor processing for quick online reactions is robust against aging. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(1), 205–209. https://doi.org/10.1523/JNEUROSCI.2599-09.2010
  • Kawano, K., Shidara, M., Watanabe, Y., & Yamane, S. (1994). Neural activity in cortical area MST of alert monkey during ocular following responses. Journal of Neurophysiology, 71(6), 2305–2324. https://doi.org/10.1152/jn.1994.71.6.2305
  • Kimura, D., Kadota, K., & Kinoshita, H. (2015). The impact of aging on the spatial accuracy of quick corrective arm movements in response to sudden target displacement during reaching. Frontiers in Aging Neuroscience, 7(SEP), 182. https://doi.org/10.3389/fnagi.2015.00182
  • Krauzlis, R. J. (2004). Recasting the smooth pursuit eye movement system. Journal of Neurophysiology, 91(2), 591–603. https://doi.org/10.1152/jn.00801.2003
  • Krauzlis, R. J., Basso, M. A., & Wurtz, R. H. (2000). Discharge properties of neurons in the rostral superior colliculus of the monkey during smooth-pursuit eye movements. Journal of Neurophysiology, 84(2), 876–891. https://doi.org/10.1152/jn.2000.84.2.876
  • Krauzlis, R. J., Zivotofsky, A. Z., & Miles, F. A. (1999). Target selection for pursuit and saccadic eye movements in humans. Journal of Cognitive Neuroscience, 11(6), 641–649. https://doi.org/10.1162/089892999563706
  • Leigh, R., & Zee, D. (2015). The neurology of eye movements (5th ed.). Oxford University Press. https://books.google.com/books?hl=ja&lr=lang_ja|lang_en&id=v2s0BwAAQBAJ&oi=fnd&pg=PP1&ots=4rrk-aBJtK&sig=tbsKLr4YaR6XzYSFL7ADyYGvjyI
  • Lindner, A., & Ilg, U. J. (2000). Initiation of smooth-pursuit eye movements to first-order and second-order motion stimuli. Experimental Brain Research, 133(4), 450–456. https://doi.org/10.1007/s002210000459
  • Lisberger, S. G. (2010). Visual guidance of smooth-pursuit eye movements: Sensation, action, and what happens in between. In Neuron, 66(4), 477–491. https://doi.org/10.1016/j.neuron.2010.03.027
  • Lisberger, S. G., & Westbrook, L. E. (1985). Properties of visual inputs that initiate horizontal smooth pursuit eye movements in monkeys. The Journal of Neuroscience, 5(6), 1662–1673. https://doi.org/10.1523/JNEUROSCI.05-06-01662.1985
  • Miyamoto, T., Hirata, Y., Katoh, A., Miura, K., & Ono, S. (2021). The influence of stimulus and behavioral histories on predictive control of smooth pursuit eye movements. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-01733-1
  • Miyamoto, T., Miura, K., Kizuka, T., & Ono, S. (2020, December). Properties of smooth pursuit and visual motion reaction time to second-order motion stimuli. PloS One, 15(12), e0243430. https://doi.org/10.1371/journal.pone.0243430
  • Movshon, J. A., & Newsome, W. T. (1996). Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. The Journal of Neuroscience, 16(23), 7733–7741. https://doi.org/10.1523/JNEUROSCI.16-23-07733.1996
  • Newsome, W. T., Wurtz, R. H., Dursteler, M. R., & Mikami, A. (1985). Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. The Journal of Neuroscience, 5(3), 825–840. https://doi.org/10.1523/JNEUROSCI.05-03-00825.1985
  • Ono, S. (2015). The neuronal basis of on-line visual control in smooth pursuit eye movements. Vision Research, 110(Pt B), 257–264. https://doi.org/10.1016/j.visres.2014.06.008
  • Perrone, J. A., & Thiele, A. (2001). Speed skills: Measuring the visual speed analyzing properties of primate MT neurons. Nature Neuroscience, 4(5), 526–532. https://doi.org/10.1038/87480
  • Pisella, L., Gréa, H., Tilikete, C., Vighetto, A., Desmurget, M., Rode, G., Boisson, D., & Rossetti, Y. (2000). An “‘automatic pilot’ for the hand in human posterior parietal cortex: Toward reinterpreting optic ataxia”. Nature Neuroscience, 3(7), 729–736. https://doi.org/10.1038/76694
  • Prablanc, C., & Martin, O. (1992). Automatic control during hand reaching at undetected two-dimensional target displacements. Journal of Neurophysiology, 67(2), 455–469. https://doi.org/10.1152/jn.1992.67.2.455
  • Priebe, N. J., Cassanello, C. R., & Lisberger, S. G. (2003). The neural representation of speed in macaque area MT/V5. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 23(13), 5650–5661. https://doi.org/10.1523/JNEUROSCI.23-13-05650.2003
  • Priot, A. E., Revol, P., Sillan, O., Prablanc, C., & Gaveau, V. (2020). Sensory prediction of limb movement is critical for automatic online control. Frontiers in Human Neuroscience, 14, 549537. https://doi.org/10.3389/fnhum.2020.549537
  • Saijo, N., Murakami, I., Nishida, S., & Gomi, H. (2005). Large-field visual motion directly induces an involuntary rapid manual following response. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25(20), 4941–4951. https://doi.org/10.1523/JNEUROSCI.4143-04.2005
  • Santos, E. M., & Kowler, E. (2017). Anticipatory smooth pursuit eye movements evoked by probabilistic cues. Journal of Vision, 17(13), 13–13. https://doi.org/10.1167/17.13.13
  • Whitney, D., Westwood, D. A., & Goodale, M. A. (2003). The influence of visual motion on fast reaching movements to a stationary object. Nature, 423(6942), 869–873. https://doi.org/10.1038/nature01693
  • Wolpert, D. M., & Flanagan, J. R. (2001). Primer motor prediction. Current Biology, 11(18), R729–R732. https://doi.org/10.1016/S0960-9822(01)00432-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.