214
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Implicit Adaptation Processes Promoted by Immediate Offline Visual and Numeric Feedback

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-17 | Received 18 Oct 2021, Accepted 06 Jun 2022, Published online: 03 Jul 2022

REFERENCES

  • Barkley, V., Salomonczyk, D., Cressman, E. K., & Henriques, D. Y. (2014). Reach adaptation and proprioceptive recalibration following terminal visual feedback of the hand. Frontiers in Human Neuroscience, 8, 705.
  • Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
  • Benson, B. L., Anguera, J. A., & Seidler, R. D. (2011). A spatial explicit strategy reduces error but interferes with sensorimotor adaptation. Journal of Neurophysiology, 105(6), 2843–2851. https://doi.org/10.1152/jn.00002.2011
  • Bernier, P. M., Chua, R., & Franks, I. M. (2005). Is proprioception calibrated during visually guided movements? Experimental Brain Research, 167(2), 292–296. https://doi.org/10.1007/s00221-005-0063-5
  • Bond, K. M., & Taylor, J. A. (2015). Flexible explicit but rigid implicit learning in a visuomotor adaptation task. Journal of Neurophysiology, 113(10), 3836–3849. https://doi.org/10.1152/jn.00009.2015
  • Brudner, S. N., Kethidi, N., Graeupner, D., Ivry, R. B., & Taylor, J. A. (2016). Delayed feedback during sensorimotor learning selectively disrupts adaptation but not strategy use. Journal of Neurophysiology, 115(3), 1499–1511. https://doi.org/10.1152/jn.00066.2015
  • Butcher, P. A., & Taylor, J. A. (2018). Decomposition of a sensory prediction error signal for visuomotor adaptation. Journal of Experimental Psychology. Human Perception and Performance, 44(2), 176–194. https://doi.org/10.1037/xhp0000440
  • Carter, M. J., & Ste-Marie, D. (2017). An interpolated activity during the knowledge-of-results delay interval eliminates the learning advantages of self-controlled feedback schedules. Psychological Research, 81(2), 399–406. https://doi.org/10.1007/s00426-016-0757-2
  • Dang, K. V., Parvin, D. E., & Ivry, R. B. (2019). Exploring contextual interference in implicit and explicit motor learning. bioRxiv, 644211. https://doi.org/10.1101/644211
  • Diedrichsen, J., White, O., Newman, D., & Lally, N. (2010). Use-dependent and error-based learning of motor behaviors. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 30(15), 5159–5166. https://doi.org/10.1523/JNEUROSCI.5406-09.2010
  • Ganis, G., & Schendan, H. E. (2011). Visual imagery. Wiley Interdisciplinary Reviews. Cognitive Science, 2(3), 239–252. https://doi.org/10.1002/wcs.103
  • Hadjiosif, A. M., Krakauer, J. W., & Haith, A. M. (2021). Did we get sensorimotor adaptation wrong? Implicit adaptation as direct policy updating rather than forward-model-based learning. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 41(12), 2747–2761. https://doi.org/10.1523/JNEUROSCI.2125-20.2021
  • Heirani Moghaddam, S., Chua, R., & Cressman, E. K. (2021). Assessing and defining explicit processes in visuomotor adaptation. Experimental Brain Research, 239(7), 2025–2041. https://doi.org/10.1007/s00221-021-06109-5
  • Held, R., & Hein, A. (1958). Adaptation of disarranged hand-eye coordination contingent upon re-afferent stimulation. Perceptual and Motor Skills, 8(3), 87–90. https://doi.org/10.2466/pms.1958.8.3.87
  • Hinder, M. R., Riek, S., Tresilian, J. R., De Rugy, A., & Carson, R. G. (2010). Real-time error detection but not error correction drives automatic visuomotor adaptation. Experimental Brain Research, 201(2), 191–207. https://doi.org/10.1007/s00221-009-2025-9
  • Hinder, M. R., Tresilian, J. R., Riek, S., & Carson, R. G. (2008). The contribution of visual feedback to visuomotor adaptation: How much and when? Brain Research, 1197, 123–134. https://doi.org/10.1016/j.brainres.2007.12.067
  • Honda, T., Hirashima, M., & Nozaki, D. (2012a). Adaptation to visual feedback delay influences visuomotor learning. PLoS ONE, 7(5), e37900–9. https://doi.org/10.1371/journal.pone.0037900
  • Honda, T., Hirashima, M., & Nozaki, D. (2012b). Habituation to feedback delay restores degraded visuomotor adaptation by altering both sensory prediction error and the sensitivity of adaptation to the error. Front Psychol, 3, 1–8. 10.3389/fpsyg.2012.00540
  • Hutter, S. A., & Taylor, J. A. (2018). Relative sensitivity of explicit reaiming and implicit motor adaptation. Journal of Neurophysiology, 120(5), 2640–2648. https://doi.org/10.1152/jn.00283.2018
  • Izawa, J., & Shadmehr, R. (2011). Learning from sensory and reward prediction errors during motor adaptation. PLoS Computational Biology, 7(3), e1002012. https://doi.org/10.1371/journal.pcbi.1002012
  • Kitazawa, S., Kohno, T., & Uka, T. (1995). Effects of delayed visual information on the rate and amount of prism adaptation in the human. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 15(11), 7644–7652. https://doi.org/10.1523/JNEUROSCI.15-11-07644.1995
  • Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863. 10.3389/fpsyg.2013.00863
  • Larssen, B. C., Ho, D. K., Kraeutner, S. N., & Hodges, N. J. (2021). Combining observation and physical practice: Benefits of an interleaved schedule for visuomotor adaptation and motor memory consolidation. Frontiers in Human Neuroscience, 15, 614452. 10.3389/fnhum.2021.614452
  • Larssen, B. C., Ong, N. T., & Hodges, N. J. (2012). Watch and learn: Seeing is better than doing when acquiring consecutive motor tasks. PLoS ONE, 7(6), e38938–8. , 2012. https://doi.org/10.1371/journal.pone.0038938
  • Leow, L. A., Marinovic, W., de Rugy, A., & Carroll, T. J. (2018). Task errors contribute to implicit aftereffects in sensorimotor adaptation. The European Journal of Neuroscience, 48(11), 3397–3409. https://doi.org/10.1111/ejn.14213
  • Lim, S. B., Larssen, B. C., & Hodges, N. J. (2014). Manipulating visual-motor experience to probe for observation-induced after-effects in adaptation learning. Experimental Brain Research, 232(3), 789–802. https://doi.org/10.1007/s00221-013-3788-6
  • Mazzoni, P., & Krakauer, J. W. (2006). An implicit plan overrides an explicit strategy during visuomotor adaptation. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 26(14), 3642–3645. , 2006. https://doi.org/10.1523/JNEUROSCI.5317-05.2006
  • McDougle, S. D., Bond, K. M., & Taylor, J. A. (2015). Explicit and implicit processes constitute the fast and slow processes of sensorimotor learning. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 35(26), 9568–9579. https://doi.org/10.1523/JNEUROSCI.5061-14.2015
  • McDougle, S. D., Ivry, R. B., & Taylor, J. A. (2016). Taking aim at the cognitive side of learning in sensorimotor adaptation tasks. Trends in Cognitive Sciences, 20(7), 535–544. https://doi.org/10.1016/j.tics.2016.05.002
  • Mikaelian, H., & Held, R. (1964). Two types of adaptation to an optically-rotated visual field. The American Journal of Psychology, 77(2), 257–263. https://doi.org/10.2307/1420132
  • Modchalingam, S., Vachon, C. M., 't Hart, B. M., & Henriques, D. Y. P. (2019). The effects of awareness of the perturbation during motor adaptation on hand localization. PloS One, 14(8), e0220884. https://doi.org/10.1371/journal.pone.0220884
  • Nikooyan, A. A., & Ahmed, A. A. (2015). Reward feedback accelerates motor learning. Journal of Neurophysiology, 113(2), 633–646. https://doi.org/10.1152/jn.00032.2014
  • Ong, N. T., & Hodges, N. J. (2010). Absence of after-effects for observers after watching a visuomotor adaptation. Experimental Brain Research, 205(3), 325–334. https://doi.org/10.1007/s00221-010-2366-4
  • Ong, N. T., Larssen, B. C., & Hodges, N. J. (2012). In the absence of physical practice, observation and imagery do not result in updating of internal models for aiming. Experimental Brain Research, 218(1), 9–19. https://doi.org/10.1007/s00221-011-2996-1
  • R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  • Redding, G. M., & Wallace, B. (1993). Adaptive coordination and alignment of eye and hand. Journal of Motor Behavior, 25(2), 75–88. https://doi.org/10.1080/00222895.1993.9941642
  • Redding, G. M., & Wallace, B. (2002). Strategic calibration and spatial alignment: A model from prism adaptation. Journal of Motor Behavior, 34(2), 126–138. https://doi.org/10.1080/00222890209601935
  • Saijo, N., & Gomi, H. (2010). Multiple motor learning strategies in visuomotor rotation. PloS One, 5(2), e9399. https://doi.org/10.1371/journal.pone.0009399
  • Salmoni, A. W., Schmidt, R. A., & Walter, C. B. (1984). Knowledge of results and motor learning: A review and critical reappraisal. Psychological Bulletin, 95(3), 355–386. https://doi.org/10.1037/0033-2909.95.3.355
  • Salomonczyk, D., Cressman, E. K., & Henriques, D. Y. (2011). Proprioceptive recalibration following prolonged training and increasing distortions in visuomotor adaptation. Neuropsychologia, 49(11), 3053–3062.
  • Sarlegna, F. R., Gauthier, G. M., & Blouin, J. (2007). Influence of feedback modality on sensorimotor adaptation: Contribution of visual, kinesthetic, and verbal cues. Journal of Motor Behavior, 39(4), 247–258. doi: 10.3200/JMBR.39.4.247-258, 2007.
  • Schween, R., & Hegele, M. (2017). Feedback delay attenuates implicit but facilitates explicit adjustments to a visuomotor rotation. Neurobiology of Learning and Memory, 140, 124–133. https://doi.org/10.1016/j.nlm.2017.02.015
  • Schween, R., Taube, W., Gollhofer, A., & Leukel, C. (2014). Online and post-trial feedback differentially affect implicit adaptation to a visuomotor rotation . Experimental Brain Research, 232(9), 3007–3013. https://doi.org/10.1007/s00221-014-3992-z
  • Shabbott, B.A., Sainburg, R.L. (2010). Learning a visuomotor rotation: Simultaneous visual and proprioceptive information is crucial for visuomotor remapping. Experimental Brain Research, 203(1), 75–87. 10.1007/s00221-010-2209-3
  • Shadmehr, R., & Krakauer, J.W. (2008). A computational neuroanatomy for motor control. Experimental Brain Research, 185, 359–381. https://doi.org/10.1007/s00221-008-1280-5
  • Shadmehr, R., & Mussa-Ivaldi, F. (1994). Adaptive representation of dynamics during learning of a motor task. The Journal of Neuroscience, 14, 3208–3224. https://doi.org/10.1523/JNEUROSCI.14-05-03208.1994
  • Swinnen, S., P. (1990). Interpolated activities during the knowledge-of-results delay and post-knowledge-of-results interval: Effects on performance and learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(4), 692–705. https://doi.org/10.1037/0278-7393.16.4.692
  • Swinnen, S. P., Schmidt, R. A., Nicholson, D. E., & Shapiro, D. C. (1990). Information feedback for skill acquisition: Instantaneous knowledge of results degrades learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(4), 706–716. https://doi.org/10.1037/0278-7393.16.4.706
  • Taylor, J. A., & Ivry, R. B. (2011). Flexible cognitive strategies during motor learning. PLoS Computational Biology, 7(3), e1001096. https://doi.org/10.1371/journal.pcbi.1001096
  • Taylor, J. A., Krakauer, J. W., & Ivry, R. B. (2014). Explicit and implicit contributions to learning in a sensorimotor adaptation task. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 34(8), 3023–3032. https://doi.org/10.1523/JNEUROSCI.3619-13.2014
  • Tseng, Y., Diedrichsen, J., Krakauer, J. W., Shadmehr, R., & Bastian, A. J. (2007). Sensory prediction errors drive cerebellum-dependent adaptation of reaching. Journal of Neurophysiology, 98(1), 54–62. https://doi.org/10.1152/jn.00266.2007
  • Werner, S., van Aken, B. C., Hulst, T., Frens, M. A., van der Geest, J. N., Strüder, H. K., & Donchin, O. (2015). Awareness of sensorimotor adaptation to visual rotations of different size. PloS One, 10(4), e0123321. https://doi.org/10.1371/journal.pone.0123321
  • Winstein, C. J., & Schmidt, R. A. (1990). Reduced frequency of knowledge of results enhances motor skill learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(4), 677–691. https://doi.org/10.1037/0278-7393.16.4.677
  • Wolpert, D. M. (1997). Computational approaches to motor control. Trends in Cognitive Sciences, 1(6), 209–216. https://doi.org/10.1016/S1364-6613(97)01070-X
  • Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science (New York, N.Y.), 269(5232), 1880–1882. https://doi.org/10.1126/science.7569931
  • Wood, J. M., Kim, H. E., French, M. A., Reisman, D. S., & Morton, S. M. (2020). Use-dependent plasticity explains aftereffects in visually guided locomotor learning of a novel step length asymmetry. Journal of Neurophysiology, 124(1), 32–39. https://doi.org/10.1152/jn.00083.2020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.