335
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Mediation Analysis of the Effect of Visuospatial Memory on Motor Skill Learning in Older Adults

, & ORCID Icon
Pages 68-77 | Received 04 Jan 2022, Accepted 20 Jul 2022, Published online: 28 Jul 2022

REFERENCES

  • Anderson, D. I., Lohse, K. R., Lopes, T. C. V., & Williams, A. M. (2021). Individual differences in motor skill learning: Past, present and future. Human Movement Science, 78, 102818. https://doi.org/10.1016/j.humov.2021.102818
  • Bo, J., Borza, V., & Seidler, R. D. (2009). Age-related declines in visuospatial working memory correlate with deficits in explicit motor sequence learning. Journal of Neurophysiology, 102(5), 2744–2754. https://doi.org/10.1152/jn.00393.2009
  • Bo, J., Jennett, S., & Seidler, R. D. (2011). Working memory capacity correlates with implicit serial reaction time task performance. Experimental Brain Research, 214(1), 73–81. https://doi.org/10.1007/s00221-011-2807-8
  • Caffarra, P., Vezzadini, G., Dieci, F., Zonato, F., & Venneri, A. (2002). Rey-Osterrieth complex figure: Normative values in an Italian population sample. Neurological Sciences : Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 22(6), 443–447. https://doi.org/10.1007/s100720200003
  • Caselli, R. J., Langlais, B. T., Dueck, A. C., Chen, Y., Su, Y., Locke, D. E. C., Woodruff, B. K., & Reiman, E. M. (2020). Neuropsychological decline up to 20 years before incident mild cognitive impairment. Alzheimer's & Dementia : The Journal of the Alzheimer's Association, 16(3), 512–523. https://doi.org/10.1016/j.jalz.2019.09.085
  • Censor, N., Sagi, D., & Cohen, L. G. (2012). Common mechanisms of human perceptual and motor learning. Nature Reviews. Neuroscience, 13(9), 658–664. https://doi.org/10.1038/nrn3315
  • Christova, M., Aftenberger, H., Nardone, R., & Gallasch, E. (2018). Adult gross motor learning and sleep: Is there a mutual benefit? Neural Plasticity, 2018, 3076986–3076912. https://doi.org/10.1155/2018/3076986
  • Duff, K., Lyketsos, C. G., Beglinger, L. J., Chelune, G., Moser, D. J., Arndt, S., Schultz, S. K., Paulsen, J. S., Petersen, R. C., & McCaffrey, R. J. (2011). Practice effects predict cognitive outcome in amnestic mild cognitive impairment. The American Journal of Geriatric Psychiatry : Official Journal of the American Association for Geriatric Psychiatry, 19(11), 932–939. https://doi.org/10.1097/JGP.0b013e318209dd3a
  • Fauth, E. B., Schaefer, S. Y., Zarit, S. H., Ernsth-Bravell, M., & Johansson, B. (2017). Associations between fine motor performance in activities of daily living and cognitive ability in a nondemented sample of older adults: Implications for geriatric physical rehabilitation. Journal of Aging and Health, 29(7), 1144–1159. https://doi.org/10.1177/0898264316654674
  • Fauth, E. B., Schwartz, S., Tschanz, J. T., Østbye, T., Corcoran, C., & Norton, M. C. (2013). Baseline disability in activities of daily living predicts dementia risk even after controlling for baseline global cognitive ability and depressive symptoms. International Journal of Geriatric Psychiatry, 28(6), 597–606. https://doi.org/10.1002/gps.3865
  • Field-Fote, E. (2019). Mediators and moderators, confounders and covariates: exploring the variables that illuminate or obscure the “active ingredients” in neurorehabilitation. Journal of Neurologic Physical Therapy : JNPT, 43(2), 83–84. https://doi.org/10.1097/NPT.0000000000000275
  • Hawe, R. L., Scott, S. H., & Dukelow, S. P. (2019). Taking proportional out of stroke recovery. Stroke, 50(1), 204–211. https://doi.org/10.1161/STROKEAHA.118.023006
  • Hayes, A. F. (2009). Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Communication Monographs, 76(4), 408–420. https://doi.org/10.1080/03637750903310360
  • Hinder, M. R., Schmidt, M. W., Garry, M. I., Carroll, T. J., & Summers, J. J. (2011). Absence of cross-limb transfer of performance gains following ballistic motor practice in older adults. Journal of Applied Physiology, 110(1), 166–175. https://doi.org/10.1152/japplphysiol.00958.2010
  • Hirsiger, S., Koppelmans, V., Mérillat, S., Liem, F., Erdeniz, B., Seidler, R. D., & Jäncke, L. (2016). Structural and functional connectivity in healthy aging: Associations for cognition and motor behavior. Human Brain Mapping, 37(3), 855–867. https://doi.org/10.1002/hbm.23067
  • Hooyman, A., Gordon, J., & Winstein, C. (2021). Unique behavioral strategies in visuomotor learning: Hope for the non-learner. Human Movement Science, 79, 102858. https://doi.org/10.1016/j.humov.2021.102858
  • Hooyman, A., Malek‐Ahmadi, M., Fauth, E. B., & Schaefer, S. Y. (2021). Challenging the relationship of grip strength with cognitive status in older adults. International Journal of Geriatric Psychiatry, 36(3), 433–442. https://doi.org/10.1002/gps.5441
  • Hooyman, A., Wang, P., & Schaefer, S. Y. (2021). Age-related differences in functional tool-use are due to changes in movement quality and not simply motor slowing. Experimental Brain Research, 239(5), 1617–1626. https://doi.org/10.1007/s00221-021-06084-x
  • Hope, T. M. H., Friston, K., Price, C. J., Leff, A. P., Rotshtein, P., & Bowman, H. (2019). Recovery after stroke: Not so proportional after all? Brain : A Journal of Neurology, 142(1), 15–22. https://doi.org/10.1093/brain/awy302
  • Jeunet, C., Jahanpour, E., & Lotte, F. (2016). Why standard brain-computer interface (BCI) training protocols should be changed: An experimental study. Journal of Neural Engineering, 13(3), 036024. https://doi.org/10.1088/1741-2560/13/3/036024
  • Jeunet, C., N'Kaoua, B., Subramanian, S., Hachet, M., & Lotte, F. (2015). Predicting mental imagery-based BCI performance from personality, cognitive profile and neurophysiological patterns. PloS One, 10(12), e0143962. https://doi.org/10.1371/journal.pone.0143962
  • Katz, S., Downs, T. D., Cash, H. R., & Grotz, R. C. (1970). Progress in development of the index of ADL. The Gerontologist, 10(1), 20–30. https://doi.org/10.1093/geront/10.1_part_1.20
  • Kawato, M., & Gomi, H. (1992). A computational model of four regions of the cerebellum based on feedback-error learning. Biological Cybernetics, 68(2), 95–103. https://doi.org/10.1007/BF00201431
  • Koshiyama, D., Fukunaga, M., Okada, N., Morita, K., Nemoto, K., Yamashita, F., Yamamori, H., Yasuda, Y., Matsumoto, J., Fujimoto, M., Kudo, N., Azechi, H., Watanabe, Y., Kasai, K., & Hashimoto, R. (2020). Association between the superior longitudinal fasciculus and perceptual organization and working memory: A diffusion tensor imaging study. Neuroscience Letters, 738, 135349. https://doi.org/10.1016/j.neulet.2020.135349
  • Kraemer, H. C. (2016). Messages for clinicians: Moderators and mediators of treatment outcome in randomized clinical trials. The American Journal of Psychiatry, 173(7), 672–679. https://doi.org/10.1176/appi.ajp.2016.15101333
  • Lee, M.-H., & Ranganathan, R. (2019). Age-related deficits in motor learning are associated with altered motor exploration strategies. Neuroscience, 412, 40–47. https://doi.org/10.1016/j.neuroscience.2019.05.047
  • Lingo VanGilder, J., Hengge, C. R., Duff, K., & Schaefer, S. Y. (2018). Visuospatial function predicts one-week motor skill retention in cognitively intact older adults. Neuroscience Letters, 664, 139–143. https://doi.org/10.1016/j.neulet.2017.11.032
  • Lingo VanGilder, J., Hooyman, A., Bosch, P. R., & Schaefer, S. Y. (2021). Generalizing the predictive relationship between 1-month motor skill retention and Rey–Osterrieth Delayed Recall scores from nondemented older adults to individuals with chronic stroke: A short report. Journal of NeuroEngineering and Rehabilitation, 18(1), 94. https://doi.org/10.1186/s12984-021-00886-4
  • Lingo VanGilder, J., Hooyman, A., Peterson, D. S., & Schaefer, S. Y. (2020). Post-stroke cognitive impairments and responsiveness to motor rehabilitation: A review. Current Physical Medicine and Rehabilitation Reports, 8(4), 461–468. https://doi.org/10.1007/s40141-020-00283-3
  • Lingo VanGilder, J., Lohse, K. R., Duff, K., Wang, P., & Schaefer, S. Y. (2021). Evidence for associations between Rey-Osterrieth Complex Figure test and motor skill learning in older adults. Acta Psychologica, 214, 103261. https://doi.org/10.1016/j.actpsy.2021.103261
  • Lingo VanGilder, J., Walter, C. S., Hengge, C. R., & Schaefer, S. Y. (2019). Exploring the relationship between visuospatial function and age-related deficits in motor skill transfer. Aging Clinical and Experimental Research, 32(8), 1451–1458. https://doi.org/10.1007/s40520-019-01345-w
  • MacKinnon, D. P., & Fairchild, A. J. (2009). Current directions in mediation analysis. Current Directions in Psychological Science, 18(1), 16–20. https://doi.org/10.1111/j.1467-8721.2009.01598.x
  • Magill, R. A., & Hall, K. G. (1990). A review of the contextual interference effect in motor skill acquisition. Human Movement Science, 9(3–5), 241–289. https://doi.org/10.1016/0167-9457(90)90005-X
  • Muellbacher, W., Ziemann, U., Boroojerdi, B., Cohen, L., & Hallett, M. (2001). Role of the human motor cortex in rapid motor learning. Experimental Brain Research, 136(4), 431–438. https://doi.org/10.1007/s002210000614
  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4
  • Pan, H., Liu, S., Miao, D., & Yuan, Y. (2018). Sample size determination for mediation analysis of longitudinal data. BMC Medical Research Methodology, 18(1), 32. 10.1186/s12874-018-0473-2[PMC][29580203
  • R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org
  • Ranganathan, R., Tomlinson, A. D., Lokesh, R., Lin, T.-H., & Patel, P. (2021). A tale of too many tasks: Task fragmentation in motor learning and a call for model task paradigms. Experimental Brain Research, 239(1), 1–19. https://doi.org/10.1007/s00221-020-05908-6
  • Raw, R. K., Kountouriotis, G. K., Mon-Williams, M., & Wilkie, R. M. (2012). Movement control in older adults: Does old age mean middle of the road? Journal of Experimental Psychology. Human Perception and Performance, 38(3), 735–745. https://doi.org/10.1037/a0026568
  • Schaefer, S. Y. (2015). Preserved motor asymmetry in late adulthood: Is measuring chronological age enough? Neuroscience, 294, 51–59. https://doi.org/10.1016/j.neuroscience.2015.03.013
  • Schaefer, S. Y., & Duff, K. (2015). Rapid responsiveness to practice predicts longer-term retention of upper extremity motor skill in non-demented older adults. Frontiers in Aging Neuroscience, 7, 214. https://doi.org/10.3389/fnagi.2015.00214
  • Schaefer, S. Y., & Hengge, C. R. (2016). Testing the concurrent validity of a naturalistic upper extremity reaching task. Experimental Brain Research, 234(1), 229–240. https://doi.org/10.1007/s00221-015-4454-y
  • Schaefer, S. Y., Dibble, L. E., & Duff, K. (2015). Efficacy and feasibility of functional upper extremity task-specific training for older adults with and without cognitive impairment. Neurorehabilitation and Neural Repair, 29(7), 636–644. https://doi.org/10.1177/1545968314558604
  • Schaefer, S. Y., Hooyman, A., & Duff, K. (2020). Using a timed motor task to predict one-year functional decline in amnestic mild cognitive impairment. Journal of Alzheimer's Disease : JAD, 77(1), 53–58. https://doi.org/10.3233/JAD-200518
  • Schaefer, S. Y., McCulloch, K. L., & Lang, C. E. (2022). Pondering the cognitive-motor interface in neurologic physical therapy. Journal of Neurologic Physical Therapy, 46(1), 1–2. https://doi.org/10.1097/NPT.0000000000000381
  • Seidler, R. D. (2007). Older adults can learn to learn new motor skills. Behavioural Brain Research, 183(1), 118–122. https://doi.org/10.1016/j.bbr.2007.05.024
  • Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin, J. T., Kwak, Y., & Lipps, D. B. (2010). Motor control and aging: Links to age-related brain structural, functional, and biochemical effects. Neuroscience and Biobehavioral Reviews, 34(5), 721–733. https://doi.org/10.1016/j.neubiorev.2009.10.005
  • Seidler, R. D., Bo, J., & Anguera, J. A. (2012). Neurocognitive contributions to motor skill learning: The role of working memory. Journal of Motor Behavior, 44(6), 445–453. https://doi.org/10.1080/00222895.2012.672348
  • Seidler, R., Erdeniz, B., Koppelmans, V., Hirsiger, S., Mérillat, S., & Jäncke, L. (2015). Associations between age, motor function, and resting state sensorimotor network connectivity in healthy older adults. NeuroImage, 108, 47–59. https://doi.org/10.1016/j.neuroimage.2014.12.023
  • Smith, C. D., Walton, A., Loveland, A. D., Umberger, G. H., Kryscio, R. J., & Gash, D. M. (2005). Memories that last in old age: Motor skill learning and memory preservation. Neurobiology of Aging, 26(6), 883–890. https://doi.org/10.1016/j.neurobiolaging.2004.08.014
  • Theilmann, R. J., Reed, J. D., Song, D. D., Huang, M. X., Lee, R. R., Litvan, I., & Harrington, D. L. (2013). White-matter changes correlate with cognitive functioning in Parkinson’s disease. Frontiers in Neurology, 4, 37. https://doi.org/10.3389/fneur.2013.00037
  • Tingley, D., Yamamoto, T., Hirose, K., Keele, L., & Imai, K. (2014). mediation: R package for causal mediation analysis. Journal of Statistical Software, 59(5), 1–38. https://doi.org/10.18637/jss.v059.i05
  • Van Liew, C., Monaghan, A. S., Dibble, L. E., Foreman, K. B., MacKinnon, D. P., & Peterson, D. S. (2021). Perturbation practice in multiple sclerosis: Assessing generalization from support surface translations to tether-release tasks. Multiple Sclerosis and Related Disorders, 56, 103218. https://doi.org/10.1016/j.msard.2021.103218
  • Voelcker-Rehage, C. (2008). Motor-skill learning in older adults—A review of studies on age-related differences. European Review of Aging and Physical Activity, 5(1), 5–16. https://doi.org/10.1007/s11556-008-0030-9
  • Wang, P., Infurna, F. J., & Schaefer, S. Y. (2020). Predicting motor skill learning in older adults using visuospatial performance. Journal of Motor Learning and Development, 8(1), 38–51. https://doi.org/10.1123/jmld.2018-0017
  • Whitley, J. D. (1970). Effects of practice distribution on learning a fine motor task. Research Quarterly. American Association for Health, Physical Education and Recreation, 41(4), 576–583. https://doi.org/10.1080/10671188.1970.10615018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.