121
Views
2
CrossRef citations to date
0
Altmetric
Articles

Ceropsylla pouteriae Burckhardt sp. nov. (Hemiptera: Psylloidea: Triozidae), a new species of jumping plant-louse inducing galls on the leaves of Pouteria ramiflora (Mart.) Radlk. (Sapotaceae): taxonomy, gall structure and histochemistry

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1923-1950 | Received 19 Aug 2019, Accepted 01 Oct 2019, Published online: 24 Oct 2019

References

  • Aloni R. 2001. Foliar and axial aspects of vascular differentiation: hypotheses and evidence. J Plant Growth Regul. 20:22–34. doi:10.1007/s003440010001.
  • Álvarez R, Encina A, Hidalgo NP. 2009. Histological aspects of three Pistacia terebinthus galls induced by three different aphids: paracletus cimiciformis, Forda marginata and Forda formicaria. Plant Sci. 176:303–314. doi:10.1016/j.plantsci.2008.11.006.
  • Arduin M, Fernandes GW, Kraus JE. 2005. Morphogenesis of galls induced by Baccharopelma dracunculifoliae (Hemiptera: Psyllidae) on Baccharis dracunculifolia (Asteraceae) leaves. Braz J Biol. 65:559–571. doi:10.1590/S1519-69842005000400002.
  • Bedetti CS, Modol LV, Isaias RMS. 2014. The role of phenolics in the control of auxin in galls of Piptadenia gonoacantha (Mart.) MacBr (Fabaceae: Mimosoideae). Biochem Syst Ecol. 55:53–59. doi:10.1016/j.bse.2014.02.016.
  • Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Bolwell GP. 2006. Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J. 47:851–863. doi:10.1111/j.1365-313X.2006.02837.x.
  • Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annu Rev Plant Biol. 54:519–546. doi:10.1146/annurev.arplant.54.031902.134938.
  • Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F. 2002. The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot. 53:1367–1376.
  • Bronner R. 1992. The role of nutritive cells in the nutrition of cynipids and cecidomyiids. In: Shorthouse JD, Rohfritsch O, editors. Biology of insect-induced galls. New York: Oxford University Press; p. 118–140.
  • Brown RG, Hodkinson ID. 1988. Taxonomy and ecology of the jumping plant-lice of Panama (Homoptera: Psylloidea). Leiden (New York, Kopenhagen, Köln): E. J. Brill, Scandinavian Science Press Ltd.; p. 304.
  • Buchanan BB, Gruissem W, Jones RL. 2000. Biochemistry and molecular biology of plants. Rockville: American Society of Plant Physiologist.
  • Buer CS, Imin N, Djordejevic MA. 2010. Flavonoids: new roles for old molecules. J Integr Plant Biol. 52:98–111. doi:10.1111/j.1744-7909.2010.00905.x.
  • Bukatsch F. 1972. Bemerkungen zur Doppelfärbung Astrablau-Safranin. Mikrokosmos. 61:255.
  • Burckhardt D. 2005. Biology, ecology, and evolution of gall-inducing psyllids (Hemiptera: Psylloidea). In: Raman A, Schaefer CW, Withers TM, editors. Biology, ecology, and evolution of gall- inducing arthropods. New Hampshire (USA): Science Publishers; p. 143–158.
  • Burckhardt D, Vu NT. 2012. Trioza hopeae (Hemiptera, Triozidae), a pest on Hopea odorata (Malvales, Dipterocarpaceae) in Vietnam. Entomol Sci. 14:1–7.
  • Calácio TF. 2016. Estrutura e metabolismo de galhas foliares induzidas por Hemiptera (Psyllidae) em Pouteria ramiflora (Mart). Radlk. (Sapotaceae) [MSc thesis]. Universidade Federal de Uberlândia. https://repositorio.ufu.br/handle/123456789/24169.
  • Caldwell JS. 1940. New genera and species of jumping plant-lice from the Hawaiian Islands with descriptions of several immature stages, (Homoptera: Psyllidae). Proc Hawaiian Entomol Soc. 10:389‒397.
  • Capener AL. 1973. Southern African Psyllidae (Homoptera) ‒ 3: A new genus and new species of South African Psyllidae. J Entomol Soc South Afr. 36(1):37‒61.
  • Carneiro RGS, Burckhardt D, Isaias RMS. 2013. Biology and systematics of gall- inducing triozids (Hemiptera: Psylloidea) associated with Psidium spp. (Myrtaceae). Zootaxa. 3620(1):129–146. doi:10.11646/zootaxa.3620.1.6.
  • Carneiro RGS, Castro AC, Isaias RMS. 2014. Unique histochemical gradients in a photosynthesis-deficient plant gall. S Afr J Bot. 92:97–104. doi:10.1016/j.sajb.2014.02.011.
  • Carneiro RGS, Isaias RMS. 2015. Gradients of metabolite accumulation and redifferentiation of nutritive cells associated with vascular tissues in galls induced by sucking-insects. AoB Plants. 7:plv086. doi:10.1093/aobpla/plv086.
  • Castro AC, Oliveira DC, Moreira ASFP, Lemos Filho JP, Isaias RMS. 2012. Source sink relation- ship and photosynthesis in the horn-shaped gall and its host plant Copaifera langsdorffii Desf. (Fabaceae). S Afr J Bot. 83:121–126. doi:10.1016/j.sajb.2012.08.007.
  • Crawford DL. 1914. A monograph of the jumping plant-lice or psyllidae of the new world. Washington: Government Printing Office; p. I-IX + 186. illus.
  • Del Río LA, Puppo A. 2009. Reactive oxygen species in plant signaling. Berlin: Springer.
  • Detoni ML, Vasconcelos EGV, Maia ACRG, Gusmão MAN, Isaias RMS, Soares GLG, Santos JC, Fernandes GW. 2011. Protein content and electrophoretic profile of insect galls on susceptible and resistant host plants of Bauhinia brevipes Vogel. (Fabaceae). Aust J Bot. 59:509–514. doi:10.1071/BT11104.
  • Dorchin N, Freidberg A, Aloni R. 2002. Morphogenesis of stem gall tissues induced by larvae of two cecidomyiid species (Diptera: Cecidomyiidae) on Suaeda monoica (Chenopodiaceae). Can J Bot. 80:1141–1150. doi:10.1139/b02-104.
  • Enderlein G. 1914. H. Sauter’s Formosa-Ausbeute: psyllidae (Homopt.). Psyllidologica II. Entomol Mit. 3(7‒8):230‒235.
  • Ferreira BG, Álvarez R, Avritzer SC, Isaias RMS. 2017. Revisiting the histological patterns of storage tissues: beyond the limits of gall-inducing taxa. Botany. 95:173–184. doi:10.1139/cjb-2016-0189.
  • Ferris GF. 1923. Observations on the chermidae (Hemiptera: Homoptera) Part I. Can Entomol. 55:250‒256. doi:10.4039/Ent55250-11.
  • Feucht W, Schmid PPS, Christ E. 1986. Distribution of flavanols in meristematic and mature tissues of Prunus avium shoots. J Plant Physiol. 25:1–8. doi:10.1016/S0176-1617(86)80237-1.
  • Furr M, Mahlberg PG. 1981. Histochemical analyses of laticifers and glandular trichomes in Cannabis sativa. J Nat Prod. 44:152–158.
  • Gahan PB. 1984. Plant histochemistry and cytochemistry. London: Academic Press.
  • Hodkinson ID. 1988. The nearctic psylloidea (Insecta: Homoptera): an annotated check list. J Nat Hist. 22:1179‒1243. doi:10.1080/00222938800770751.
  • Hollis D. 1984. Afrotropical jumping plant lice of the family triozidae (Homoptera: Psylloidea). Bull Br Mus (Natural History) (Entomology). 49:1‒102.
  • Hollis D. 2004. Australian psylloidea: jumping plantlice and lerp insects. Canberra: Department of the Environment and Heritage; p. 216.
  • Isaias RMS, Oliveira DC, Carneiro RGS. 2011. Role of Euphalerus ostreoides (Hemiptera: Psylloidea) in manipulating leaflet ontogenesis of Lonchocarpus muehlbergianus (Fabaceae). Bot. 89:581–592. doi:10.1139/b11-048.
  • Isaias RMS, Oliveira DC, Carneiro RGS, Kraus JE. 2014. Developmental anatomy of galls in the neotropcs: arthropods stimuli versus host plant constraints. In: Fernandes GW, Santos JC, editors. Neotropical insect galls. New York, NY: Springer Verlag; p. 15‒34.
  • Isaias RMS, Oliveira DC, Moreira ASFP, Soares GLG, Carneiro RGS. 2015. The imbalance of redox homeostasis in arthropod-induced plant galls: mechanisms of stress generation and dissipation. Biochim Biophys Acta Gen Subj. 1859:1509‒1517.
  • Johansen DA. 1940. Plant microtechnique. New York: McGraw-Hill Book.
  • Karnovsky MJ. 1965. A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol. 27:137–138.
  • Koch K. 2004. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Currant Opin Plant Biol. 7:235–246. doi:10.1016/j.pbi.2004.03.014.
  • Koch KE. 1996. Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol. 47:509–540. doi:10.1146/annurev.arplant.47.1.509.
  • Koch KE, Zeng Y. 2002. Molecular approaches to altered C partitioning: gene for sucrose metabolism. Am Soc Hortic Sci. 127:474–483. doi:10.21273/JASHS.127.4.474.
  • Kraus JE. 2009. Galhas: morfogênese, relações ecológicas e importância econômica. Tissot-squalli (Org.). Interações ecológicas e biodiversidade. 2 ed. Ijuí: Unijuí;  p. 109‒139.
  • Kuster VC, Rezende UC, Cardoso JCF, Isaias RMS, Oliveira DC. 2019. How galling organisms manipulate the secondary metabolites in the host plant tissues?: A histochemical overview in neotropical gall systems. Reference series in phytochemistry. 1st ed. Cham (Switzerland): Springer International Publishing; p. 1‒20.
  • Laing F. 1930. Some records of indo-malayan psyllidae. Indian For Rec. 14:166‒175.
  • Lalonde RG, Shorthouse JD. 1982. Exit strategy of Urophora cardui (Diptera: Tephritidae) from its gall on Canada thistle. Can Entomol. 114:873–878. doi:10.4039/Ent114873-9.
  • Leopold AC, Plummer TH. 1961. Auxin-phenol complexes. Plant Physiol. 36:589–591. doi:10.1104/pp.36.5.589.
  • Lev Yadun S. 2003. Stem cells in plants are differentiated too. Curr Opin Plant Biol. 4:93–100.
  • Li F. 2011. Psyllidomorpha of China (Insecta: Hemiptera). Beijing (China): Science Press; p. xli + 1976.
  • Lorenzi H. 2002. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. 4th ed. Vol. 1. Nova Odessa (SP, Brazil): Instituto Plantarum; p. 368.
  • Magalhães TA, Oliveira DC, Suzuki AYM, Isaias RMS. 2014. Patterns of cell elongation in the determination of the final shape in galls of Baccharopelma dracunculifoliae (Psyllidae) on Baccharis dracunculifolia DC (Asteraceae). Protoplasma. 251:747–4753. doi:10.1007/s00709-013-0574-z.
  • Mani MS. 1964. The ecology of plant galls. The Hague: Junk; p. 640.
  • Marty F. 1999. Plant vacuoles. Plant Cell. 11:587–600. doi:10.1105/tpc.11.4.587.
  • Mathur RN. 1975. Psyllidae of the Indian subcontinent. New Delhi: Indian Council of Agricultural Research; p. 429.
  • Mazia D, Brewer PA, Alfert M. 1953. The cytochemical staining and measurement of protein with mercuric bromophenol blue. Biol Bull. 104:57–67. doi:10.2307/1538691.
  • Meyer RF, Boyer JS. 1972. Sensitivity of cell division and cell elongation to low water potentials in soybean hypocotyls. Planta. 108:77–87. doi:10.1007/BF00386508.
  • Motta LB, Kraus JE, Salatino A, Salatino MLF. 2005. Distribution of metabolites in galled and non-galled foliar tissues of Tibouchina pulchra. Biochem Syst Ecol. 33:971–981. doi:10.1016/j.bse.2005.02.004.
  • Moura MZD, Soares GLG, Isaias RMS. 2009. Ontogênese da folha e das galhas induzidas por Aceria lantanae Cook (Acarina: Eriophyidae) em Lantana camara L. (Verbenaceae). Rev Bras Bot. 32:271–282.
  • Murphy A, Peer A, Taiz L. 2000. Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta. 211:315–324. doi:10.1007/s004250000300.
  • Naves GFS. 2017. Parâmetros vibratórios para detecção de atividade alimentar do inseto Ceropsylla (Hemiptera: Psyllidae) em galhas foliares de Pouteria ramiflora (Sapotaceae) [MSc thesis]. Universidade Federal de Uberlândia. [Accessed 2019 Jul 13]. https://repositorio.ufu.br/handle/123456789/20302.
  • O’Brien TP, Feder N, McCully ME. 1964. Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma. 59:368–373. doi:10.1007/BF01248568.
  • Oliveira DC, Carneiro RGS, Magalhães TA, Isaias RMS. 2011. Cytological and histochemical gradients on two Copaifera langsdorffii Desf. (Fabaceae) Cecidomyiidae gall systems. Protoplasma. 248:829–837. doi:10.1007/s00709-010-0258-x.
  • Oliveira DC, Christiano JDCS, Soares GLG, Isaias RMS. 2006. Reações de defesas químicas e estruturais de Lonchocarpus muehlbergianus Hassl. (Fabaceae) à ação do galhador Euphalerus ostreoides Crawf. (Hemiptera: Psyllidae). Rev Bras Bot. 29:657–667.
  • Oliveira DC, Isaias RMS. 2010a. Redifferentiation of leaflet tissues during midrib gall development in Copaifera langsdorffii (Fabaceae). S Afr J Bot. 76:239–248. doi:10.1016/j.sajb.2009.10.011.
  • Oliveira DC, Isaias RMS. 2010b. Cytological and histochemical gradients induced by a sucking insect in galls of Aspidosperma australe Arg. Muell (Apocynaceae). Plant Sci. 178:350–358. doi:10.1016/j.plantsci.2010.02.002.
  • Oliveira DC, Isaias RMS, Fernandes GW, Ferreira BG, Carneiro RGS, Fuzaro L. 2016. Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds. J Insect Physiol. 84:103‒113. doi:10.1016/j.jinsphys.2015.11.012.
  • Oliveira DC, Magalhães TA, Carneiro RGS, Alvim MN, Isaias RMS. 2010. Do Cecidomyiidae galls of Aspidosperma spruceanum (Apocynaceae) fit the pre-established cytological and histochemical patterns? Protoplasma. 242(1–4):81–93. doi:10.1007/s00709-010-0128-6.
  • Oliveira DC, Moreira AS, Isaias RMS, Martini V, Rezende U. 2017. Sink status and photosynthetic rate of the leaflet galls induced by Bystracoccus mataybae (Eriococcidae) on Matayba guianensis (Sapindaceae). Front Plant Sci. 8:1249. doi:10.3389/fpls.2017.01249.
  • Ossiannilsson F. 1992. The Psylloidea (Homoptera) of Fennoscandia and Denmark. Fauna Entomol Scand. 26:347.
  • Ouvrard D. 2019. Psyl’list - The world psylloidea database. [Accessed 2019 Jul 13]. https://www.hemiptera-databases.org/psyllist/?&lang=en.
  • Ouvrard D, Chalise P, Percy DM. 2015. Host-plant leaps versus host-plant shuffle: a global survey reveals contrasting patterns in an oligophagous insect group (Hemiptera, Psylloidea). Syst Biodivers. 13:434–454. doi:10.1080/14772000.2015.1046969.
  • Parsons D. 2012. False mastic psylla (Ceropsylla sideroxyli). [Accessed 2019 Jul 9]. https://www.youtube.com/watch?v=ryyXpvh2_E4
  • Peer W, Murphy A. 2007. Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci. 12:556–563. doi:10.1016/j.tplants.2007.10.003.
  • Percy DM. 2018. Revision of the Hawaiian psyllid genus Swezeyana, with descriptions of seven new species (Hemiptera, Psylloidea, Triozidae). Zookeys. 758:75‒113. doi:10.3897/zookeys.758.23019.
  • Percy DM, Crampton-Platt A, Sveinsson S, Lemmon AR, Lemmon EM, Ouvrard D, Burckhardt D. 2018. Resolving the psyllid tree of life: phylogenomic analyses of the superfamily Psylloidea (Hemiptera). Syst Entomol. 43:762–776. doi:10.1111/syen.2018.43.issue-4.
  • Price PW, Fernandes GW, Waring GL. 1987. Adaptive nature of insect gall. Environ Entomol. 16:15–24. doi:10.1093/ee/16.1.15.
  • Rezende UC, Cardoso JCF, Kuster VC, Gonçalves LA, Oliveira DC. 2018. How the activity of natural enemies changes the structure and metabolism of the nutritive tissue in galls? Evidence from the Palaeomystella oligophaga (Lepidoptera) -Macairea radula (Metastomataceae) system. Protoplasma. 255:1‒9.
  • Riley CV. 1885. Notes on North American Psyllidae. Proc Biol Soc Washington (1882?1884). 2:67‒79.
  • Rohfritsch O, Anthony M. 1992. Strategies on gall induction by two groups of homopterans. In: Shorthouse JD, Rohfritsch O, editors. Biology of insect-induced galls. New York (NY): Oxford University Press; p. 102–117.
  • Roitsch T, González MC. 2004. Function and regulation of plant invertases: sweet sensations. Trends Plant Sci. 9:606–613. doi:10.1016/j.tplants.2004.10.009.
  • Rossetti S, Bonnatti PM. 2001. In situ histochemical monitoring of ozone-and TMV induced reactive oxygen species in tobacco leaves. Plant Physiol Biochem. 39:433–442. doi:10.1016/S0981-9428(01)01250-5.
  • Santos B, Ribeiro B, Silva T, Araújo W. 2012. Galhas de insetos em uma área de cerrado sentido restrito na região semi-urbana de Caldas Novas (Goiás, Brasil). Rev Bras Biociências. 10(4):439‒445.
  • Sass JE. 1951. Botanical microtechnique. Iowa: State Press.
  • Schönrogge K, Harper LJ, Lichtenstein CP. 2000. The protein content of tissues in cynipid galls (Hymenoptera: Cynipidae): similarities between cynipid galls and seeds. Plant Cell Environ. 23:215–222. doi:10.1046/j.1365-3040.2000.00543.x.
  • Shorthouse JD, Rohfritsch O. 1992. Biology of insect-induced galls. New York: Oxford University Press; p. 285.
  • Silva AFM, Kuster VC, Rezende UC, Oliveira DC. 2019. The early developmental stages of gall-inducing insects define final gall structural and histochemical profiles: the case of Bystracoccus mataybae galls on Matayba guianensis. Botany. 97:1–12. doi:10.1139/cjb-2019-0017.
  • Smeekens S. 2000. Sugar‐induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol. 51:49–81. doi:10.1146/annurev.arplant.51.1.49.
  • Stevens PF. 2001 onwards. Angiosperm phylogeny website. [Accessed 2017 Jul 14]. [and more or less continuously updated since]. http://www.mobot.org/MOBOT/research/APweb/.
  • Stone GN, Schönrogge K. 2003. The adaptive significance of insect gall morphology. Trends Ecol Evol. 18:512‒522. doi:10.1016/S0169-5347(03)00247-7.
  • Sturm A. 1999. Update on biochemistry invertases. Primary structures, functions, and roles in: plant development and sucrose partitioning. Plant Physiol. 121:1–7. doi:10.1104/pp.121.1.1.
  • Sturm A, Tang G. 1999. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci. 4:401–407.
  • Torres MA, Dangl JL, Jones JDG. 2002. Arabidopsis gp91phox homologues AtrbohD AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Proc Natl Acad Sci. 99:517–522. doi:10.1073/pnas.012452499.
  • Tuthill LD. 1943. The psyllids of America north of Mexico (Psyllidae: Homoptera). Iowa State Coll J Sci. 17:443‒660.
  • WFO. 2019. World flora online. [Accessed 2019 Sept 25]. http://www.worldfloraonline.org.
  • Yang CT. 1984. Psyllidae of Taiwan. Taiwan Mus Spec Publ Ser. 3:1‒305.
  • Yu FL. 1956. Notes on psyllidae (Homoptera) from Fukien and Taiwan, China, 1. Mem Coll Agric Nat Univ Taiwan. 4(3):43‒54.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.