561
Views
2
CrossRef citations to date
0
Altmetric
Article

Molar entropy of the selenium (VI)/(IV) couple obtained by cyclic voltammetry

Pages 359-368 | Received 09 Oct 2013, Accepted 29 Nov 2013, Published online: 07 Jan 2014

References

  • Jorg G, Buhnemann R, Hollas S, Kivel N, Kossert K, Van Winckel S, Gostomski CL. Preparation of radiochemically pure 79Se and highly precise determination of its half-life. Appl Radiat Isotopes. 2010;68:2339–2351.
  • Olin Å, Noläng B, Öhman LO, Osadchii EG, Rosén E. Chemical thermodynamics of selenium. Amsterdam: Elsevier; 2005.
  • Iida Y, Yamaguchi T, Tanaka T, Nakayama S. Solubility of selenium at high ionic strength under anoxic conditions. J Nucl Sci Technol. 2010;47:431–438.
  • Japan Nuclear Cycle Development Institute (JNC). H12: project to establish the scientific and technical basis for HLW disposal in Japan – second progress report on research and development for the geological disposal of HLW in Japan. Tokai-mura (Japan): JNC; 2000.
  • Chunming S, Donald LS. Selenate and selenite sorption on iron oxides an infrared and electrophoretic study. Soil Sci Soc Am J. 2000;64:101–111.
  • Cui D, Puranen A, Devoy J, Scheidegger A, Leupin OX, Wersin P, Gens R, Spahiu K. Reductive immobilization of 79Se by iron canister under simulated repository environment. J Radioanal Nucl Chem. 2009;282:349–354.
  • Doi R. Determination of the selenium (VI)/(IV) standard redox potential by cyclic voltammetry. J Nucl Sci Technol. 2013;51:56–63.
  • Grenthe I, Mompean F, Spahiu K, Wanner H. TDB-2 guidelines for the extrapolation to zero ionic strength. Issy-les-Moulineaux (France): OECD Nuclear Energy Agency; 2013. Available from: http://www.oecd-nea.org/dbtdb/guidelines/tdb2.pdf
  • Kitamura A, Fujiwara K, Doi R, Yoshida Y, Mihara M, Terashima M, Yui M. JAEA thermodynamic database for performance assessment of geological disposal of high-level radioactive and TRU wastes. Tokai-mura (Japan): Japan Atomic Energy Agency; 2009.
  • Philippini V, Aupiais J, Vercounter T, Moulin C. Formation of CaSO4(aq) and CaSeO4(aq) studied as a function of ionic strength and temperature by CE. Electrophoresis. 2009;20:3582–3590.
  • Riglet CH, Robouch P, Vitorge P. Standard potentials of the (MO2 +2/MO2+) and (M4+/M3+) redox systems for neptunium and plutonium. Radiochimica Acta. 1989; 46:85–94.
  • Capdevila H, Vitorge P. Temperature and ionic strength influence on U(VI/V) and U(IV/III) redox potentials in aqueous acidic and carbonate solutions. J Radioanal Nucl Chem. 1990;143:403–414.
  • Tomas V, Pierre V, Badia A, Eric G, Solange H, Christophe M. Stabilities of the aqueous complexes Cm(CO3)33− and Am(CO3)33− in the temperature range 10–70 °C. Inorg Chem. 2005;44:5833–5843.
  • Pitzer KS, Kim JJ. Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J Am Chem Soc. 1974;96:5701–5707.
  • Pitzer KS, Mayorga G. Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J Phys Chem. 1976;77:2300–2308.
  • Bard J, Parsons R, Jordan J. Standard potentials in aqueous solution. New York (NY): Marcel Dekker, Inc.; 1986.
  • Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL. The NBS tables of chemical thermodynamic properties: selected values for inorganic and C1 and C2 organic substances in SI units. New York (NY): American Chemical Society and American Institute of Physics; 1982.
  • Puigdomènech I, Rard JA, Plyasunov AV, Grenthe I. TDB-4 temperature corrections to thermodynamic data and enthalpy calculations. Issy-les-Moulineaux (France): OECD Nuclear Energy Agency; 1999. Available from: http://www.oecd-nea.org/ dbtdb/guidelines/tdb4new.pdf
  • Doi R, Yui M. Experimental study by cyclic voltammetry of standard potential of Se(IV)/Se(VI) redox system. J Nucl Fuel Cycle Environ. 2009;16:35–42. Japanese.
  • Kim SY, Asakura T, Morita Y. Electrochemical and spectroscopic studies of Pu(IV) and Pu(III) in nitric acid solutions. J Radioanal Nucl Chem. 2013;295:937–942.
  • Fujishima A, Aizawa M, Inoue T. Electrochemical measurements. Tokyo: Gihodo Syuppan Co.; 1984.
  • Murat A, Umit D, Curtis S. Electrochemical formation of Se atomic layers on Au(111) surface: the role of adsorbed selenate and selenite. J Electroanal Chem. 2004;561:21–27.
  • Andrews RW, Johnson DC. Voltammetric deposition and stripping of selenium(IV) at a rotating gold-disk electrode in 0.1M perchloric acid. Anal Chem. 1975;47:294–299.
  • Wanner H, Östhols E. TDB-3 guidelines for the assignment of uncertainties. Issy-les-Moulineaux (France): OECD Nuclear Energy Agency; 2000. Available from: http://www.oecd-nea.org/dbtdb/guidelines/ tdb3new.pdf
  • Tomas V, Badia A, Christophe M, Eric G, Pierre V. Sulfate complexation of trivalent lanthanides probed by nanoelectrospray mass spectrometry and time-resolved laser induced luminescence.Inorg Chem. 2005;44:7570–7581.
  • Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Section. 1976;A32:751–767.
  • The Chemical Society of Japan. Chemical handbook. Tokyo: Maruzen Publishing; 1993.
  • Lewis GN, Randall M. Thermodynamics. 2nd ed. Revised by Pitzer KS and Brewer L. New York (NY): McGraw-Hill; 1961.
  • Millero FJ. Effects of pressure and temperature on activity coefficients. In: Pytkowicz RM, editor. Activity coefficients in electrolyte solutions. Boca Raton (FL): CRC Press; 1979.
  • Helgeson HC, Kirkham DH, Flowers GC. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600°C and 5 kb. Am J Sci. 1981;281:1249–1516.
  • Oelkers EH, Helgeson HC. Triple-ion anions and polynuclear complexing in supercritical electrolyte solutions. Geochimica Cosmochimica Acta. 1990;54:727–738.
  • Grenthe I, Plyasunov A. On the use of semiempirical electrolyte theories for the modeling of solution chemical data. Pure Appl Chem. 1997;69:951–958.
  • Xiangliang, Siagian S, Basar K, Sakuma T, Takahashi H, Igawa N, Ishii Y. Inter-atomic distance and temperature dependence of correlation effects among thermal displacements. Solid State Ionics. 2009;180:480–482.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.