1,010
Views
11
CrossRef citations to date
0
Altmetric
Articles

Sorption behavior of thorium onto granite and its constituent minerals

, , &
Pages 1573-1584 | Received 09 Sep 2015, Accepted 03 Jan 2016, Published online: 10 Feb 2016

References

  • Japan Nuclear Cycle Development Institute (JNC). H12: Project to establish the scientific and technical basis for HLW disposal in Japan. Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan. Tokai: JNC; 2000.
  • Rand MH, Fuger J, Grenthe I, et al. Chemical thermodynamics of thorium. Amsterdam: Elsevier; 2009.
  • Kitamura A, Fujiwara K, Doi R, et al. Update of JAEA-TDB: additional selection of thermodynamic data for solid and gaseous phases on nickel, selenium, zirconium, technetium, thorium, uranium, neptunium, plutonium and americium, update of thermodynamic data on iodine, and some modifications. Tokai: Japan Atomic Energy Agency; 2012.
  • Reiller P, Moulin V, Casanova F, et al. On the study of Th(IV)–humic acid interactions by competition sorption studies with silica and determination of global interaction constants. Radiochim Acta. 2003;91:513–524.
  • Melson NH, Haliena BP, Kaplan DI, et al. Adsorption of tetravalent thorium by geomedia. Radiochim Acta. 2012;100:827–832.
  • Yui M, Sasamoto H. Geostatistical and geochemical classification of groundwaters considered in safety assessment of a deep geologic repository for high-level radioactive wastes in Japan. Geochem J. 2004;38(1):33–42.
  • Yamaguchi T, Takeda S, Nishimura Y, et al. An attempt to select thermodynamic data and to evaluate the solubility of radioelement with uncertainty under HLW disposal conditions. Radiochim Acta. 2014;102(11):999–1008.
  • Japan Atomic Energy Agency (JAEA) and Federation of Electric Power Companies of Japan (FEPC). Second progress report on research and development for TRU waste disposal in Japan – repository design, safety assessment and means of implementation in the generic phase. Tokai: JAEA and FEPC; 2007.
  • Sasamoto H, Yui M. Viewpoint of defining the groundwater chemistry for the performance assessment on geological disposal of high level radioactive waste. Tokai. JNC; 2000. [in Japanese].
  • Sasamoto H, Yui M, Arthur RC. Estimation of in situ groundwater chemistry using geochemical modeling: a test case for saline type groundwater in argillaceous rock. Phys Chem Earth. 2007;32:196–208.
  • Allard B, Rydberg J, Kipatsi H, et al. Disposal of radioactive waste in granitic bedrock. Am Chem Soc. 1979;4:47–73.
  • Allard B, Olofsson U, Torstenfelt B, et al. Sorption of actinides in well-defined oxidation states on geologic media. Mater Res Soc Symp Proc. 1982;11:775–782.
  • Östhols E. Thorium sorption on amorphous silica. Geochim Cosmochim Acta. 1995;59:1235–1249.
  • Chen C, Wang X. Sorption of Th (IV) to silica as a function of pH, humic/fulvic acid, ionic strength, electrolyte type. Appl Radiat Isot. 2007;65:155–163.
  • Nuclear Energy Agency (NEA). Thermodynamic sorption modelling in support of radioactive waste disposal safety cases: NEA Sorption Project Phase III. Paris: OECD-NEA; 2012.
  • Rojo I, Seco F, Rovira M, et al. Thorium sorption onto magnetite and ferrihydrite in acidic conditions. J Nucl Mater. 2009;385:474–478.
  • Xu D, Chen C, Tan X, et al. Sorption of Th(IV) on Na-rectorite: effect of HA, ionic strength, foreign ions and temperature. Appl Geochem. 2007;22:2892–2906.
  • Karamalidis AK, Dzombak DA. Surface complexation modeling: gibbsite. Weinheim: Wiley; 2010.
  • Cromieres L, Moulin V, Fourest B, et al. Sorption of thorium onto hematite colloids. Radiochim Acta. 1998;82:249–255.
  • Romanchuk AY, Kalmykov SN. Actinides sorption onto hematite: experimental data, surface complexation modeling and linear free energy relationship. Radiochim Acta. 2014;102(4):303–310.
  • Hunter KA, Hawke DJ, Choo LK. Equilibrium adsorption of thorium by metal oxides in marine electrolytes. Geochim Cosmochim Acta. 1988; 52:627–636.
  • Riese AC. Adsorption of radium and thorium onto quartz and kaolinite: a comparison of solution/surface equilibria models [Ph.D. thesis]. Colorado School of Mines; 1982.
  • La Flamme BD, Murray JW. Solid/solution interaction: the effect of carbonate alkalinity on adsorbed thorium. Geochim Cosmochim Acta. 1987;51:243–250.
  • Olin M, Lehikoinen J. Application of surface complexation modelling: nickel sorption on quartz, manganese oxide, kaolinite and goethite, and thorium on silica. Finland: Posiva; 1997.
  • Quigley MS, Honeyman BD, Santschi PH. Thorium sorption in the marine environment: equilibrium partitioning at the hematite/water interface, sorption/desorption kinetics and particle tracing. Aquat Geochem. 1996;1:277–301.
  • Murphy RJ, Lenhart JJ, Honeyman BD. The sorption of thorium (IV) and uranium (VI) to hematite in the presence of natural organic matter. Colloid Surface A. 1999;157:47–62.
  • Bradbury MH, Baeyens B. Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides. Geochim Cosmochim Acta. 2005;69:875–892.
  • Bradbury MH, Baeyens B. Sorption modelling on illite. Part II: Actinide sorption and linear free energy relationships. Geochim Cosmochim Acta. 2009;73:1004–1013.
  • Bradbury MH, Baeyens B. Predictive sorption modelling of Ni(II), Co(II), Eu(III), Th(IV) and U(VI) on MX-80 bentonite and Opalinus Clay: a “bottom-up” approach. Appl Clay Sci. 2011;52:27–33.
  • Ervanne H, Puukko E, Hakanen, M. Modeling of sorption of Eu, Mo, Nb, Ni, Pa, Se, Sn, Th and U on kaolinite and illite in olkiluoto groundwater simulants. Finland: Posiva; 2013.
  • Stumm W, Morgan JJ. Aquatic chemistry. 3rd ed. New York: Wiley; 1996.
  • Baskaran M, Santschi PH, Benoit G, et al. Scavenging of thorium isotopes by colloids in seawater of the Gulf of Mexico. Geochim Cosmochim Acta. 1992;56(9): 3375–3388.
  • Brunauer S, Emmett PH, Teller E. Adsorption of gasses in multimolecular layers. J Am Chem Soc. 1938;60:309–319.
  • Atomic Energy Society of Japan (AESJ). Measurement method of the distribution coefficient on the sorption process. Tokyo: AESJ; 2006. [in Japanese].
  • Oyama Y, Takahashi M, Tsukamoto H, et al. Relationship between water quality of deep-groundwater and geology in non-volcanic areas in Japan. J Nucl Fuel Cycle Env. 2011;18:25–34.
  • Sakamoto Y, Ishii T, Inagawa S, et al. Measurement of distribution coefficients of U series radionuclides on soils under shallow land environment(II) -pH dependence of distribution coefficients. J Nucl Fuel Cycle Env. 2001;8:65–76. [in Japanese].
  • Shibutani T, Nishikawa T, Inui S, et al. Study on sorption behavior of Se on rocks and minerals. Tokai: Power Reactor and Nuclear Fuel Development Corporation; 1994. [in Japanese].
  • Dzombak DA, Morel FMM. Surface complexation modeling: hydrous ferric oxide. New York: Wiley-Interscience; 1990.
  • Tachi Y, Ochs M, Suyama T. Integrated sorption and diffusion model for bentonite. Part 1: clay–water interaction and sorption modeling in dispersed systems. J Nucl Sci Technol. 2014;51:1177–1190
  • Turner DR, Pabalan RT, Bertetti FP. Neptunium(V) sorption on montmorillonite: an experimental and surface complexation modeling study. Clays Clay Miner. 1998;46:256–269.
  • Davis JA, Kent DB. Surface complexation modeling in aqueous geochemistry. Rev Mineral. 1990;23:177–260.
  • Sasaki M. Geochemical features of groundwaters in granitoids. Bull Geol Surv Japan. 2004;55:439–446, [in Japanese].
  • Chakraborty S, Wolthers M, Chatterjee D, et al. Adsorption of arsenite and arsenate onto muscovite and biotite mica. J Colloid Interface Sci. 2007;309:392–401.
  • Iida Y, Tanaka T, Yamaguchi T. Sorption behavior of hydroselenide (HSe−) onto iron-containing minerals. J Nucl Sci Technol. 2014;51:305–322.
  • Shirozu H. Nendo Kobutsu Gaku: Nendo Kagaku No Kiso. Tokyo: Asakura Shoten; 1988. [in Japanese].
  • Idemitsu K, Furuya H, Murayama K, et al. Diffusivity of uranium(VI) in water-saturated Inada granite. Mater Res Soc Symp Proc. 1996;257:625–632.
  • Michot L, Tracas D, Lartiges B, et al. Partial pillaring of vermiculite by aluminium polycations. Clay Miner. 1994;29:133–136.
  • André M, Neretnieks I, Malmstrom ME. Measuring sorption coefficients and BET surface areas on intact drillcore and crushed granite samples. Radiochim Acta. 2008;96:673–677.
  • Byegård J, Johansson H, Skålberg M, et al. The interaction of sorbing and non-sorbing tracers with different Äspö rock types. Sweden: SKB; 1998.
  • Hakanen M, Ervanne H, Puukko E. Safety case for the disposal of spent nuclear fuel at Olkiluoto radionuclide migration parameters for the geosphere. Finland: Posiva; 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.