665
Views
6
CrossRef citations to date
0
Altmetric
Articles

Thermodynamic model for Zr solubility in the presence of gluconic acid and isosaccharinic acid

, , &
Pages 233-241 | Received 06 Jun 2016, Accepted 16 Oct 2016, Published online: 19 Dec 2016

References

  • Greenfield BF, Moreton AD, Spindler MW, et al. The effects of the degradation of organic materials in the near field of a radioactive waste repository. Mater Res Soc Symp Proc. 1992;257:299–306.
  • Moreton AD. Thermodynamic modelling of the effect of hydroxycarboxylic acids on the solubility of plutonium at high pH. Mater Res Soc Symp Proc. 1994;293:753–758.
  • Tits J, Wieland E, Bradbury MH, et al. The uptake of Eu(III) and Th(IV) by calcite under hyperalkaline conditions. Villigen (Switzerland): Paul Scherrer Institut; 2002. ( PSI Report No. 02-03).
  • Felmy AR. Chemical speciation of americium, curium and selected tetravalent actinides in high level waste. Richland (WA): PNNL; 2004. ( EMSP Project 73749).
  • Tits J, Wieland E, Bradbury MH. The effect of isosaccharinic acid and gluconic acid on the retention of Eu(III), Am(III) and Th(IV) by calcite. Appl Geochem. 2005;20:2082–2096.
  • Rojo H, Tits J, Gaona X, et al. Thermodynamics of Np(IV) complexes with gluconic acid under alkaline conditions: sorption studies. Radiochim Acta. 2013;101:133–138.
  • Hummel W, Anderegg G, Rao L, et al. Chemical thermodynamics of compounds and complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr with selected organic ligands. In: Mompean FJ, Illemassene M, Perrone J, editors. Chemical thermodynamics. Vol. 9. North-Holland (Amsterdam): Elsevier; 2005.
  • Rai D, Rao L, Moore RC, et al. Development of biodegradable isosaccharinate-containing foams for decontamination of actinides: thermodynamic and kinetic reactions between isosaccharinate and actinides on metal and concrete surfaces. Washington (DC): USDOE; 2004. (USDOE Technical Report No. EMSP-82715-2004).
  • Warwick P, Evans N, Hall T, et al. Stability constants of uranium (IV)-α-isosaccharinic acid and gluconic acid complexes. Radiochim Acta. 2004;92:897–902.
  • Greenfield BF, Holtom GJ, Hurdus MH, et al. The identification and degradation of isosaccharinic acid, a cellulose degradation product. Mat Res Soc Sym. 1995;353:1151–1158.
  • Moreton AD, Pilkington NJ, Tweed CJ. Thermodynamic modeling of the effect of hydroxycarboxylic acids on the solubility of plutonium at high pH. Oxfordshire: United Kingdom Nirex Ltd.; 2000. (UK NIREX Report NSS/R339).
  • Rai D, Yui M, Moore DA, et al. Thermodynamic model for ThO2(am) solubility in isosaccharinate solutions. J Solution Chem. 2009;38:1573–1587.
  • Gaona X, Montoya V, Colas E, et al. Review of the complexation of tetravalent actinides by ISA and gluconate under alkaline to hyperalkaline conditions. J Contam Hydrol. 2008;102:217–227.
  • Fanghänel Th, Neck V. Aquatic chemistry and solubility phenomena of actinide oxides/hydroxides. Pure Appl Chem. 2002;74:1895–1907.
  • Altmaier M, Gaona X, Fanghänel Th. Recent advances in aqueous actinide chemistry and thermodynamics. Chem Rev. 2013;113:901–943.
  • Knope KE, Soderholm L. Solution and solid-state structural chemistry of actinide hydrates and their hydrolysis and condensation products. Chem Rev. 2013;113:944–994.
  • Whistler RL, BeMiller JN. α-D-isosaccharino-1,4-lactone. Action of lime water on lactose. In: Whistler RL, Wolfrom ML, BeMiller JN, editors. Methods in carbohydrate chemistry. Vol. II, Reactions of carbohydrates. New York: Academic Press; 1963.
  • Ekberg C, Kallvenius G, Albinsson Y, et al. Studies on the hydrolytic behavior of zirconium(IV). J Solution Chem. 2004;33:47–79.
  • Sasaki T, Kobayashi T, Takagi I, et al. Solubility measurement of zirconium(IV) hydrous oxide. Radiochim Acta. 2006;94:489–494.
  • Altmaier M, Neck V, Fanghänel Th. Solubility of Zr (IV), Th (IV) and Pu (IV) hydrous oxides in CaCl2 solutions and the formation of ternary Ca-M (IV)-OH complexes. Radiochim Acta. 2008;96:541–550.
  • Zhang Z, Gibson P, Clark SB, et al. Lactonization and protonation of gluconic acid: a thermodynamic and kinetic study by potentiometry, NMR and ESI-MS. J Solution Chem. 2007;36:1187–1200.
  • Colas E, Grive M, Rojo I, et al. Solubility of ThO2 ·xH2O(am) in the presence of gluconate. Radiochim Acta. 2011;99:269–273.
  • Kobayashi T, Sasaki T, Takagi I, et al. Solubility and solubility-limiting solid phase in M(IV)-OH-dicarboxylate ternary aqueous system. J Nucl Sci Technol. 2011;48:993–1003.
  • Smith RM. NIST critically selected stability constants of metal complexes database version 5.0. Gaithersburg (MD): National Institute of Standards & Technology, U.S. Secretary of Commerce; 1998.
  • Sasaki T, Kobayashi T, Takagi I, et al. Hydrolysis constant and coordination geometry of zirconium(IV). J Nucl Sci Technol. 2008;45:735–739.
  • Guillaumont R, Fanghänel Th, Fuger J, et al. Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. In: Mompean FJ, Illemassene M, Domenech-Orti C, Ben-Said K, editors. Chemical thermodynamics. Vol. 5. Amsterdam: Elsevier; 2003.
  • Curti E. Nagra/PSI thermochemical database update: selection of data for zirconium. Villigen (Switzerland): Paul Scherrer Institut; 2001. (Paul Scherrer Institut Report TM-44-01-01).
  • Fujiwara K, Yamana H, Fujii T, et al. Determination of uranium(IV) hydrolysis constants and solubility product of UO2*xH2O. Radiochim Acta. 2003;91:345–350.
  • Kobayashi T, Sasaki T, Takagi I, et al. Zirconium solubility in ternary aqueous system of Zr(IV)-OH –carboxylates. J Nucl Sci Technol. 2009;46:142–148.
  • Rai D, Hess NJ, Xia Y, et al. Comprehensive thermodynamic model applicable to highly acidic to basic conditions for isosaccharinate reactions with Ca(II) and Np(IV). J Solution Chem. 2003;32:665–689.
  • Kobayashi T, Sasaki T, Takagi I, et al. Solubility of thorium(IV) in the presence of oxalic and malonic acids. J Sci Nucl Technol. 2009;46:1085–1090.
  • Sasaki T, Takaoka Y, Kobayashi T, et al. Hydrolysis constants and complexation of Th(IV) with carboxylates. Radiochim Acta. 2008;96:799–803.
  • Vercammen K, Glaus MA, Van Loon LR. Complexation of Th(IV) and Eu(III) by α-isosaccharinic acid under alkaline conditions. Radiochim Acta. 2001;89:393–401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.