931
Views
6
CrossRef citations to date
0
Altmetric
Article

A comparative study of hydride-induced embrittlement of Zircaloy-4 fuel cladding tubes in the longitudinal and hoop directions

, , , , , , , , & show all
Pages 490-499 | Received 14 Jul 2016, Accepted 28 Dec 2016, Published online: 15 Feb 2017

References

  • Bailey JE. Electron microscope observations on the precipitation of zirconium hydride in zirconium. Acta Metall. 1963;11:267–280.
  • Qin W, Szpunar JA, Kiran Kumar NAP, et al. Microstructural criteria for abrupt ductile-to-brittle transition induced by δ-hydrides in zirconium alloys. Acta Mater. 2014;81:219–229.
  • Kunz FW, Bibb AE. Habit plane of hydride precipitation in zirconium and zirconium-uranium. Trans Metall Soc AIME. 1960;218:133–135.
  • Suman S, Khan MK, Pathak M, et al. Hydrogen in Zircaloy: mechanism and its impacts. Int J Hydrog Energy. 2015;40:5976–5994.
  • Une K, Nogita K, Ishimoto S, et al. Crystallography of zirconium hydrides in recrystallized Zircaloy-2 fuel cladding by electron backscatter diffraction. J Nucl Sci Technol. 2004;41:731–740.
  • Perovic V, Weatherly GC, Simpson CJ. Hydride precipitation in α/β zirconium alloys. Acta Metall. 1983;31:1381–1391.
  • Bai J, Prioul C, Lansiart S, et al. Brittle fracture induced by hydrides in zircaloy-4. Scr Metall Mater. 1991;25:2559–2563.
  • Huang JH, Ho CS. Effect of hydrogen gas on the mechanical properties of a zirconium alloy. Mater Chem Phys. 1994;38:138–145.
  • Fan Y, Koss DA. The influence of multiaxial states of stress on the hydrogen embrittlement of zirconium alloy sheet. Metall Trans A. 1985;16:675–681.
  • Puls MP. The influence of hydride size and matrix strength on fracture initiation at hydrides in zirconium alloys. Metall Trans A. 1988;19:1507–1522.
  • Cockeram BV, Hollenbeck JL. The role of stress-state on the deformation and fracture mechanism of hydrided and non-hydrided Zircaloy-4. J Nucl Mater. 2015;467( Part 1):9–31.
  • Glendening A, Koss D, Motta A, et al. Failure of hydrided Zircaloy-4 under equal-biaxial and plane-strain tensile deformation. J ASTM Int. 2005;2:1–16.
  • Abe H, Abe T, Kishita S, et al. Development of advanced expansion due to compression (A-EDC) test method for safety evaluation of degraded nuclear fuel cladding materials. J Nucl Sci Technol. 2015;52:1232–1239.
  • Nagase F, Sugiyama T, Fuketa T. Optimized ring tensile test method and hydrogen effect on mechanical properties of Zircaloy cladding in hoop direction. J Nucl Sci Technol. 2009;46:545–552.
  • Busser V, Baietto-Dubourg M-C, Desquines J, et al. Mechanical response of oxidized Zircaloy-4 cladding material submitted to a ring compression test. J Nucl Mater. 2009;384:87–95.
  • Hermann A, Yagnik S, Gavillet D. Effect of local hydride accumulations on Zircaloy cladding mechanical properties. Paper presented at: Zirconium in the Nuclear Industry. 15th International Symposium; 2007 Jun 24–28; Sunriver, OR.
  • Garde AM, Smith GP, Pirek RC. Effects of hydride precipitate localization and neutron fluence on the ductility of irradiated Zircaloy-4. Paper presented at: Zirconium in the nuclear industry. 11th International Symposium; 1996; Garmisch-Partenkirchen, Germany.
  • Desquines J, Koss DA, Motta AT, et al. The issue of stress state during mechanical tests to assess cladding performance during a reactivity-initiated accident (RIA). J Nucl Mater. 2011;412:250–267.
  • Chateigner D, Germi P, Pernet M. Texture analysis by the Schulz reflection method: defocalization corrections for thin films. J Appl Crystallogr. 1992;25:766–769.
  • Nagao K, Kagami E. X-ray thin-film measurement techniques_VII_Pole figure measurement. Rigaku J. 2011;27:6–14.
  • Wassermann G, Grewen J. Texturen metallischer Werkstoffe [Textures of metallic materials]. Berlin: Springer; 1962.
  • Dillamore IL, Roberts WT. Preferred orientation in wrought and annealed metals. Metall Rev. 1965;10:271–380.
  • Tenckhoff E. Operable deformation of textured Zircaloy tubing. In: Schemel JH, Rosenbaum HS, editors. Zirconium in Nulcear Applications; 1973 Aug 21–24; Porland, OR. Philadelphia: ASTM International; 1974. p. 179–199.
  • Ciurchea D. Texture induced anisotropy in Zircaloy-4 tubes. J Nucl Mater. 1985;131:1–10.
  • Grange M, Besson J, Andrieu E. Anisotropic behavior and rupture of hydrided Zircaloy-4 sheets. Metall Mater Trans A. 2000;31:679–690.
  • Dieter GE. Mechanical metallurgy. New York (NY): McGraw-Hill Book Company; 1961.
  • Tung H-M, Chen T-C, Tseng C-C. Effects of hydrogen contents on the mechanical properties of Zircaloy-4 sheets. Mater Sci Eng A. 2016;659:172–178.
  • Udagawa Y, Yamaguchi M, Abe H, et al. Ab initio study on plane defects in zirconium–hydrogen solid solution and zirconium hydride. Acta Mater. 2010;58:3927–3938.
  • Zanellato O, Preuss M, Buffiere J-Y, et al. Synchrotron diffraction study of dissolution and precipitation kinetics of hydrides in Zircaloy-4. J Nucl Mater. 2012;420:537–547.
  • Yamanaka S, Yoshioka K, Uno M, et al. Thermal and mechanical properties of zirconium hydride. J Alloy Compd. 1999;293–295:23–29.
  • Zhao Z, Kunii D, Abe T, et al. Study of the mechanical properties of Zircaloy-4 cladding tube by advanced expansion due to compression (A-EDC) test. Mater Trans. 2017;58:46–51.
  • Bloch J, Jacob I, Mintz MH. The effect of vacuum annealing on the hydriding kinetics of zirconium. J Alloy Compd. 1993;191:179–186.
  • Nagase F, Fuketa T. Investigation of hydride rim effect on failure of Zircaloy-4 cladding with tube burst test. J Nucl Sci Technol. 2005;42:58–65.
  • Kim JH, Lee MH, Choi BK, et al. Effect of the hydrogen contents on the circumferential mechanical properties of zirconium alloy claddings. J Alloy Compd. 2007;431:155–161.
  • Zhao YH, Guo YZ, Wei Q, et al. Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu. Scr Mater. 2008;59:627–630.
  • Zhao YH, Guo YZ, Wei Q, et al. Influence of specimen dimensions and strain measurement methods on tensile stress–strain curves. Mater Sci Eng A. 2009;525:68–77.
  • Sergueeva AV, Zhou J, Meacham BE, et al. Gage length and sample size effect on measured properties during tensile testing. Mater Sci Eng A. 2009;526:79–83.
  • Bloch J, Mintz MH. Kinetics and mechanisms of metal hydrides formation – a review. J Alloy Compd. 1997;253–254:529–541.
  • Qin W, Kiran Kumar NAP, Szpunar JA, et al. Intergranular δ-hydride nucleation and orientation in zirconium alloys. Acta Mater. 2011;59:7010–7021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.