466
Views
1
CrossRef citations to date
0
Altmetric
Article

Uranium-based TRU multi-recycling with thermal neutron HTGR to reduce environmental burden and threat of nuclear proliferation

, , , , , & show all
Pages 1275-1290 | Received 19 Apr 2018, Accepted 21 Jun 2018, Published online: 13 Jul 2018

References

  • Ohashi H, Sato H, Tachibana Y, et al. Concept of an inherently-safe high temperature gas-cooled reactor. Proc ICANSE 2011. 2011 [2011 Nov. 14-17];Bali(Indonesia):50–58.
  • Japan Nuclear Cycle Development Institute. Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan; H12: project to Establish the Scientific and Technological Basis for HLW Disposal in Japan, Project Overview Report. Ibaraki: Japan Nuclear Cycle Development Institute; 2000, JNC TN1410 2000-001.
  • Japan Atomic Energy Agency. Federation of Electric Power Companies. Second progress report on research and development for TRU waste disposal in Japan; Repository design, safety assessment and means of implementation in the generic phase. Ibaraki-ken: Japan Atomic Energy Agency; 2007, JAEA-Review 2007-010.
  • Science Council of Japan. Issues concerning HLW Disposal (Reply). Science Council of Japan; 2012, [in Japanese]. [cited 2018 Mar 9]. Available from: http://www.scj.go.jp/ja/info/kohyo/pdf/kohyo-22-k159-1.pdf
  • Atomic Energy Society of Japan. Interim report of expert committee on social environment concerning to direct disposal of spent fuel. Atomic Energy Society of Japan; 2014, [in Japanese]. [cited 2018 Mar 9]. Available from: http://www.aesj.net/document/com-r_shiyouzuminenryou2014_m.pdf
  • Kubota M, Morita Y. Preliminary assessment on four group partitioning process developed in JAERI. Proc GLOBAL’97. 1997 Oct 5-10;Tokyo(Japan):458–462.
  • Nishihara K, Nakayama S, Morita Y, et al. Impact of partitioning and transmutation on LWR high-level waste disposal. J Nucl Sci Technol. 2008 Jan;45(1):84–97.
  • Oigawa H. Present status and prospect of transmutation technology for high-level radioactive waste. Radioisotopes. 2012;61:571–586. [in Japanese].
  • Fukaya Y, Goto M, Ohashi H, et al. optimization of disposal method and scenario to reduce high level waste volume and repository footprint for HTGR. Annal Nucl Eng. 2018 Mar;116:224–234.
  • Kodochigov N, Sukharev Y, Marova E, et al. Neutronic features of the GT-MHR reactor. Nucl Eng Des. 2003 Jun;222:161–171.
  • Rodiriguez C, Baxter A, MacEachern D, et al. Deep-Burn: making nuclear waste transmutation practical. Nucl Eng Des. 2003 Jun;222:299–317.
  • Fukaya Y, Goto M, Ohashi H, et al. Proposal of a plutonium burner system based on HTGR with high proliferation resistance. J Nucl Sci Technol. 2014 Apr;51(6):818–831.
  • Mouri T, Nishihara T, Kunitomi K. Nuclear and thermal design for high temperature gas cooled reactor (GTHTR300C) using MOX fuel. Nihon-Genshiryoku-Gakkai Shi (J At Energy Soc Jpn.). 2007;6(3):253–261. [inJapanese].
  • Yan X, Kunitomi K, Nakata K, et al. GTHTR300 design and development. Nucl Eng Des. 2003 Jun;222:247–262.
  • Benedict M, Thomas HP, Hans WL. Nuclear Chemical Engineering. New York: Mcgraw-Hill Book Company; 1981.
  • Takei M, Katanishi S, Nakata T, et al. Study on the fuel cycle cost of Gas Turbine High Temperature Reactor (GTHTR300) (Contract research). JAERI-Tech 2002-089. Ibaraki-ken: Japan Atomic Energy Research Institute, 2002.
  • Advanced Nuclear System Research and Development Directorate, Research and Development Department, The Japan Atomic Power Company, Fast Reactor Cycle Technology Development Project (FaCT Project) -Phase I Report.  Ibaraki-ken: Japan Atomic Energy Agency; 2011, JAEA-Evaluation 2011-003, [in Japanese].
  • Nakata T, Katanishi S, Takada S, et al. Nuclear, thermal and hydraulic design for Gas Turbine High Temperature Reactor (GTHTR300). Nihon-Genshiryoku-Gakkai Shi (J At Energy Soc Jpn.). 2003;14(3):478–489. [in Japanese].
  • Fukaya Y, Goto M, Nishihara T. Development on nuclear design model for detailed design of clean burn HTGR. JAEA-Technology 2015-017. Ibaraki-ken: Japan Atomic Energy Agency; 2015,  [in Japanese].
  • Croff AG. ORIGEN2: A versatile computer code for calculating the nuclide compositions and characteristics of nuclear material. Nucl Technol. 1983 Sep;62:335–352.
  • Okumura K, Sugino K, Koshima K, et al. Set of ORIGEN2 cross section libraries based on JENDL-4.0; ORLIBJ40. JAEA-Data/Code 2012-032. Ibaraki-ken: Japan Atomic Energy Agency; 2012.
  • Garza A, Garrett GA, Murphy JE. Multicomponent isotope separation in cascades. Chem Eng Sci. 1961 Sep;15(3–4):188–209.
  • Yamamoto I, Kaba A, Kanagawa A. Simple formulae for analyzing matched abundance ratio cascade with constant separation factors for multi-component isotope separation. J Nucl Sci Technol. 1987 Nov;24(11):961–971.
  • Nagaya Y, Okumura K, Mori T, et al. Carlo neutron/photon transport code MVP 2, Trans. Am Nucl Soc. 2006 Nov;95:662–663.
  • Shibata K, Iwamoto O, Nakagawa T, et al. JENDL-4.0: a new library for nuclear science and technology. J Nucl Sci Technol. 2011 Jan;48:1–30.
  • Murata I, Takahashi A, Mori T, et al. New sampling method on continuous energy Monte Carlo calculation for pebble bed reactors. J Nucl Sci Technol. 1997 Aug;34(8):734–744.
  • Meulekamp R, Marck S. Calculating the effective delayed neutron fraction with Monte Calro. Nucl Sci Eng. 2006 Feb;152:142–148.
  • Fukaya Y, Ueta S, Goto M, et al. Study on methodology to estimate isotope generation and depletion for core design of HTGR. JAEA-Research 2013-035.  Ibaraki-ken: Japan Atomic Energy Agency; 2013,  [in Japanese].
  • Koning AJ, Bauge E, Dean CJ, et al. Status of the JEFF Nuclear Data Library. J Korean Phys Soc. 2011 Aug;59(2):1057–1062.
  • Nakajima Y. JNDC WG on Activation Cross Section Data: “JENDL Activation Cross Section File”. Proceedings of the 1990 Symposium on Nuclear Data. JAERI-M 91-032, 43-57.  Ibaraki-ken: Japan Atomic Energy Research Institute; 1991.
  • Koning AJ, Forrest R, Kellett M, et al. The JEFF-3.1 Nuclear Data Library.JEFF Report 21. Paris: OECD Publishing; 2006.
  • Koning AJ, Rochman D. TENDL-2011: TALYS-based Evaluated Nuclear Data Library: nuclear Research and consultancy Group. Petten: NRG; 2011. Available from: http://www.talys.eu/
  • MacFrlane R, Kahler A. Method for Processing ENDF/B-VII with NJOY. Nucl. Data Sheets. 2010 Dec;111:2739–2890.
  • Nishihara K, Oigawa H, Nakayama S, et al. Impact of partitioning and transmutation on high-level waste disposal for the fast breeder reactor fuel cycle. Nucl Sci Technol. 2010 Jun;47(12):1101–1117.
  • Oigawa H, Yokoo T, Nishihara K, et al. Parametric survey on possible impact of partitioning and transmutation of high-level radioactive waste. Proc GLOBAL 2005. 2005 Oct 9-13; Tsukuba(Japan):#266. [CD-ROM].
  • ICRP. ICRP Publication 72: age-dependent Doses to the Members of the Public from Intake of Radionuclides Part 5, Compilation of Ingestion and Inhalation Coefficients. Oxford: ICRP. Annals of the ICRP; 1996: 26.
  • ANSYS, Inc. ANSYS Mechanical APDL Theory Reference. Canonsburg (PA): ANSYS, Inc.; 2013.
  • Fukaya Y, Nishihara T. Reduction on high level radioactive waste volume and geological repository footprint with high burn-up and high thermal efficiency of HTGR. Nucl Eng Des. 2006 Jul;307:188–196.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.