344
Views
1
CrossRef citations to date
0
Altmetric
Article

Application of chemical interaction between (Fe, Cr) oxides and Mo oxide at high temperature for self-healing intelligence on nuclear fuel cladding in LWRs

, , , &
Pages 1402-1411 | Received 13 Jul 2018, Accepted 06 Aug 2018, Published online: 10 Sep 2018

References

  • Northwood DO. The development and applications of zirconium alloys. Mater Des. 1985;6(2):58–70.
  • Duan Z, Yang H, Satoh Y, et al. Current status of materials development of nuclear fuel cladding tubes for light water reactors. Nucl Eng Des. 2017;316:131–150.
  • Yamamoto Y, Pint B, Terrani K, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors. J Nucl Mater. 2015;467:703–716.
  • Hallstadius L, Johnson S, Lahoda E. Cladding for high performance fuel. Prog Nucl Energy. 2012;57:71–76.
  • Park JH, Kim HG, Park J, et al. High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings. Surf Coat Technol. 2015;280:256–259.
  • Maier BR, Garcia-Diaz BL, Hauch B, et al. Cold spray deposition of Ti2AlC coatings for improved nuclear fuel cladding. J Nucl Mater. 2015;466:712–717.
  • Duan Z, Yang H, Kano S, et al. Oxidation and electrochemical behaviors of Al2O3 and ZrO2 coatings on Zircaloy-2 cladding by thermal spraying. Surf Coat Technol. 2018;334:319–327.
  • Hazelton RF Characteristics of fuel CRUD and its impact on storage, handling, and shipment of spent fuel. Richland (WA): Pacific Northwest Lab. (USA); 1987. (Report no. PNL-6273).
  • Daub K, Van Nieuwenhove R, Nordin H. Investigation of the impact of coatings on corrosion and hydrogen uptake of Zircaloy-4. J Nucl Mater. 2015;467:260–270.
  • Kim HG, Kim LH, Jung YI, et al. Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating. J Nucl Mater. 2015;465:531–539.
  • Akiya N, Savage PE. Roles of water for chemical reactions in high-temperature water. Chem Rev. 2002;102(8):2725–2750.
  • Rumyantsev RN, Il’yin AA, Pimenova KR, et al. Conditions of formation of iron molybdate(III) by ceramic and mechanochemical syntheses. Russ J Gen Chem. 2017;87(9):2224–2228.
  • Ziemniak S, Jones M, Combs K. Solubility and phase behavior of Cr (III) oxides in alkaline media at elevated temperatures. J Solution Chem. 1998;27(1):33–66.
  • Gomes AS, Yaghini N, Martinelli A, et al. A micro-Raman spectroscopic study of Cr(OH)3 and Cr2O3 nanoparticles obtained by the hydrothermal method. J Raman Spectrosc. 2017;48(10):1256–1263.
  • Picquart M, López T, Gómez R, et al. Dehydration and crystallization process in sol–gel zirconia. J Therm Anal Calorim. 2004;76(3):755–761.
  • Gauna M, Conconi M, Gomez S, et al. Monoclinic-tetragonal zirconia quantification of commercial nanopowder mixtures by XRD and DTA. Ceram Silik. 2015;59(4):318–325.
  • Rendtorff N, Garrido L, Aglietti E. Thermal behavior of mullite–zirconia–zircon composites. Influence of zirconia phase transformation. J Therm Anal Calorim. 2011;104(2):569–576.
  • Oskarsson M, Ahlberg E, Pettersson K. Phase transformation of stabilised zirconia in water and 1.0 M LiOH. J Nucl Mater. 2001;295(1):126–130.
  • Brookes C, Wells P, Cibin G, et al. Molybdenum oxide on Fe2O3 core-shell catalysts: probing the nature of the structural motifs responsible for methanol oxidation catalysis. ACS Catal. 2013;4(1):243–250.
  • El-Geassy AA, Seetheraman S. Synthesis and characterization of nano-structured molybdenum-iron intermetallics by gas-solid reaction technique. IOP Conf Ser: Mater Sci Eng. 2016;119(1):1–10.
  • Oudghiri Hassani H. Synthesis, characterization and application of chromium molybdate for oxidation of methylene blue dye. J Mater Environ Sci. 2018;9(3):1051–1057.
  • Xie S, Chen K, Bell AT, et al. Structural characterization of molybdenum oxide supported on zirconia. J Phys Chem B. 2000;104(43):10059–10068.
  • Sleight A, Brixner L. A new ferroelastic transition in some A2(MO4)3 molybdates and tungstates. J Solid State Chem. 1973;7(2):172–174.
  • Rapposch M, Anderson J, Kostiner E. Crystal structure of ferric molybdate, Fe2(MoO4)3. Inorg Chem. 1980;19(11):3531–3539.
  • Walczak J, Kurzawa M, Filipek E. Studies on chromium(III) molybdate and equilibria in the CrVO4-Cr2(MoO4)3 system. Thermochim Acta. 1989;150(1):133–140.
  • Auray M, Quarton M, Tarte P. Crystal data for two molybdates MIV(MoO4)2 with MIV = Zr, Hf. Powder Diffr. 1987;2(1):36–38.
  • Garrido Pedrosa AM, Melo DMA, Souza MJB, et al. Synthesis, structure, and morphology of bifunctional catalysts based on zirconia modified by molybdenum oxide. Inorg Mater. 2008;44(3):285–290.
  • Kersen U, Keiski R, editors. Phase evolution, microstructure, and gas-sensing properties of the Fe2(MoO4)3 system. Chemical sensors VI: chemical and biological sensors and analytical methods. Honolulu (HI): The Electrochemical Society, Inc; 2004. cited Oct 3–8.
  • Said -A-A-A. Role of the structure and electronic properties of Fe2O3-MoO3 catalyst on the dehydration of isopropyl alcohol. Bull Chem Soc Jpn. 1992;65(12):3450–3454.
  • Miura E, Shimada T, Ogushi S, et al. Effect of molybdenum oxide(VI) on the synthesis of zircon. Nippon Kagaku Kaishi. 1973;1973(10):1879–1885. in Japanese.
  • Dadze TP, Kashirtseva GA, Novikov MP, et al. Solubility of MoO3 in NaClO4 solutions at 573 K. J Chem Eng Data. 2017;62(11):3848–3853.
  • Ivanova T, Gesheva K, Hamelmann F. Morphological and structural study of CVD MoO3-Cr2O3 films. ECS Trans. 2009;25(8):221–228.
  • Lyo IW, Ahn HS, Lim DS. Microstructure and tribological properties of plasma-sprayed chromium oxide–molybdenum oxide composite coatings. Surf Coat Technol. 2003;163:413–421.
  • Liu J, Wu X, Chen S, et al. Low-temperature MoO3 film from a facile synthetic route for an efficient anode interfacial layer in organic optoelectronic devices. J Mater Chem C. 2014;2(1):158–163.
  • Dong W, Dunn B. Sol-gel synthesis and characterization of molybdenum oxide gels. J Non-Cryst Solids. 1998;225:135–140.
  • Jung YS, Kim KH, Jang TY, et al. Enhancement of photocatalytic properties of Cr2O3-TiO2 mixed oxides prepared by sol–gel method. Curr Appl Phys. 2011;11(3):358–361.
  • Balouria V, Singh A, Debnath A, et al., editors. Synthesis and characterization of sol–gel derived Cr2O3 nanoparticles. Proceedings of the 56th DAE solid state physics symposium; [cited 2011 Dec 19–23] Kattankulathur, India: AIP; 2014.
  • Tyagi B, Sidhpuria K, Shaik B, et al. Synthesis of nanocrystalline zirconia using sol–gel and precipitation techniques. Ind Eng Chem Res. 2006;45(25):8643–8650.
  • Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110(35):17315–17328.
  • Coyle CP Synthesis of CRUD and its effects on pool and subcooled flow boiling [master’s thesis]. Boston (MA): Massachusetts Institute of Technology; 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.