206
Views
2
CrossRef citations to date
0
Altmetric
TECHNICAL MATERIAL

Power spectral analysis for a subcritical reactor system driven by a pulsed spallation neutron source in Kyoto University Critical Assembly

, , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 374-382 | Received 03 Aug 2020, Accepted 02 Oct 2020, Published online: 21 Oct 2020

References

  • Simmonss BE, King JS. A pulsed neutron technique for reactivity determination. Nucl Sci Eng. 1958;3(5):595–608.
  • Sjostrand NG. Measurements on a subcritical reactor using a pulsed neutron source. Arkiv Fysik. 1956;11:233–246.
  • Gozani T. A modified procedure for the evaluation of pulsed source experiments in subcritical reactors. Nukleonik. 1962;4:348–349.
  • Misawa T, Unesaki H, Pyeon CH. Nuclear reactor physics experiment. Kyoto (Japan): Kyoto University Press; 2010.
  • Kitamura Y, Yamauchi H, Yamane Y, et al. Experimental investigation of variance-to-mean formula for periodic and pulsed neutron source. Ann Nucl Energy. 2004;31(2):163–172.
  • Pa´zsit I, Kitamura Y, Wright J, et al. Calculation of the pulsed Feynman-alpha formulae and their experimental verification. Ann Nucl Energy. 2005;32(9):986–1007.
  • Taninaka H, Miyoshi A, Hashimoto K, et al. Feynman-α analysis for a thermal subcritical reactor system driven by an unstable 14MeV neutron source. J Nucl Sci Technol. 2011;48(9):1272–1280.
  • Kitamura Y, Pa ́zsit I, Wright J, et al. Calculation of the stochastic pulsed Rossi-alpha formula and its experimental verification. Prog Nucl Energy. 2006;48(1):37–50.
  • Sakon A, Hashimoto K, Sugiyama W, et al. Power spectral analysis for a thermal subcritical reactor system driven by a pulsed 14 MeV neutron source. J Nucl Sci Technol. 2013;50(5):481–492.
  • Sakon A, Hashimoto K, Maarof MA, et al. Measurement of large negative reactivity of an accelerator-driven system in the Kyoto University Critical Assembly. J Nucl Sci Technol. 2014;51(1):116–126.
  • Sakon A, Hashimoto K, Sugiyama W, et al. Determination of prompt-neutron decay constant from phase shift between beam current and neutron detection signals for an accelerator-driven system in the Kyoto University Critical Assembly. J Nucl Sci Technol. 2015;52(2):204–221.
  • Ichihara C, Nakamura H, Kobayashi K, et al. Characteristics of KUCA pulsed neutron generator. (KURRI- TR-240). Kumatori (Japan): Kyoto University Research Reactor Institute; 1983. [in Japanese].
  • Pyeon CH, Misawa T, Lim JY, et al. First injection of spallation neutrons generated by high-energy protons into the Kyoto University Critical Assembly. J Nucl Sci Technol. 2009;46(12):1091–1093.
  • Nakajima K, Sano T, Hohara S, et al. Feynman-α and Rossi-α analyses for a subcritical reactor system driven by a pulsed spallation neutron source in Kyoto University Critical Assembly. J Nucl Sci Technol;2020. Published online. DOI:10.1080/00223131.2020.1806138.
  • Tonoike K, Miyoshi Y, Kikuchi T, et al. Kinetic Parameter βeff/ℓ Measurement on Low Enriched Uranyl Nitrate Solution with Single Unit Cores (600φ,280T,800φ) of STACY. J Nucl Sci Technol. 2002;39(11):1227–1236.
  • Taninaka H, Hashimoto K, Pyeon CH, et al. Determination of lambda-mode eigenvalue separation of a thermal accelerator-driven system from pulsed neutron experiment. J Nucl Sci Technol. 2010;47(4):376–383.
  • Nakajima K, Sano T, Takahashi K, Sakon A, Yamanaka M, Hohara S, Pyeon CH, Hashimoto K. Source multiplication measurements and neutron correlation analyses for a highly-enriched uranium subcritical core driven by an inherent source in Kyoto University Critical Assembly. J Nucl Sci Technol. 2020. Published online. doi:10.1080/00223131.2020.1772896.
  • Pyeon CH, Yamanaka M, Oizumi A, et al. First nuclear transmutation of 237Np and 241Am by accelerator-driven system at Kyoto University Critical Assembly. J Nucl Sci Technol. 2019;56(8):684–689.
  • Sakon A, Sano T, Takahashi K, et al. Measurement of a very large negative reactivity inserted by rapid withdrawal of a partial fuel loading in Kyoto University Critical Assembly. J Nucl Sci Technol. 2020;57(3):335–343.
  • Nagaya Y, Okumura K, Sakurai T, et al. MVP/GMVP Version3: general purpose Monte Carlo codes for neutron and photon transport calculations based on continuous energy and multigroup methods. (JAEA-Data/Code 2016-018). Tokai-mura (Japan): Japan Atomic Energy Agency; 2016.
  • Nagaya Y, Okumura K, Mori T. Recent developments of JAEA’s Monte Carlo code MVP for reactor physics applications. Ann Nucl Energy. 2015;82:85–89.
  • Shibata K, Iwamoto O, Nakagawa T, et al. JENDL- 4.0: A new library for nuclear science and engineering. J Nucl Sci Technol. 2011;48(1):1–30.
  • Keepin GR, Wimett TF, Zeigler RK. Delayed neutrons from fissionable isotopes of uranium, plutonium, and thorium. Phys Rev. 1957;107(4):1044–1049.
  • Degweker SB, Rana YS. Reactor noise in accelerator driven systems - II. Ann Nucl Energy. 2007;34(6):463–482.
  • Letourneau A, Galin J, Goldenbaum F, et al. Neutron production in bombardments of thin and thick W, Hg, Pb targets by 0.4, 0.8, 1.2, 1.8 and 2.5 GeV protons. Nucl Instrum Methds Phys Res B. 2000;170:299–322.
  • Nomura T. Improvement in S/N ratio of reactor noise spectral density. J Nucl Sci Technol. 1965;2:76–77.
  • Akcasu AZ, Osborn RK. Application of Langevin’s technique to space- and energy-dependent noise analysis. Nucl Sci Eng. 1966;26:13–25.
  • Sheff JR, Albrecht RW. The space dependence of reactor noise I – theory. Nucl Sci Eng. 1966;24:246–259.
  • Hashimoto K, Nishina K, Tatematsu A, et al. Theoretical analysis of two-detector coherence functions in large fast reactor assemblies. J Nucl Sci Technol. 1991;28:1019–1028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.