3,479
Views
25
CrossRef citations to date
0
Altmetric
Article

JENDL/DEU-2020: deuteron nuclear data library for design studies of accelerator-based neutron sources

, , &
Pages 805-821 | Received 02 Oct 2020, Accepted 24 Dec 2020, Published online: 10 Feb 2021

References

  • Kim YJ. Current status of experimental facilities at RAON. Nucl Instrum Methods Phys Res Sect B. 2020;463:408–414.
  • Ledoux X, Ache M, Avrigeanu M, et al. The neutrons for science facility at SPIRAL-2. Nucl Data Sheets. 2014;119:353–356.
  • Nagai Y, Hashimoto K, Hatsukawa Y, et al. Generation of radioisotopes with accelerator neutrons by deuterons. J Phys Soc Jpn. 2013;82:064201.
  • Okuno H, Sakurai H, Mori Y, et al. Proposal of a 1-ampere-class deuteron single-cell linac for nuclear transmutation. Proc Jpn Acad B. 2019;95:430–439. .
  • Iwamoto Y, Sato T, Hashimoto S, et al. Benchmark study of the recent version of the PHITS code. J Nucl Sci Technol. 2017;54:617–635.
  • Dudouet J, Durand D. Model for particle production in nuclear reactions at intermediate energies: application to CC collisions at 95 MeV/nucleon. Phys Rev C. 2016;94:014616.
  • Chadwick M, Herman M, Obložinskỳ P, et al. ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl Data Sheets. 2011;112:2887–2996.
  • Brown DA, Chadwick M, Capote R, et al. ENDF/B-VIII.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nucl Data Sheets. 2018;148:1–142.
  • Koning A, Rochman D, Sublet JC, et al. TENDL: complete nuclear data library for innovative nuclear science and technology. Nucl Data Sheets. 2019;155:1–55.
  • Koning AJ, Hilaire S, Duijvestijn M TALYS-1.0. In: Proceedings of2007 International Conference on Nuclear Data for Science and Technology (ND2007); 22nd-27th April; Nice, France; 2007. p. 211–214.
  • Pereslavtsev P, Fischer U, Simakov S, et al. Evaluation of d+6,7Li data for deuteron incident energies up to 50 MeV. Nucl Instrum Methods Phys Res Sect B. 2008;266:3501–3512.
  • Simakov S, Fischer U, Kondo K, et al. Status of the McDeLicious approach for the D-Li neutron source term modeling in IFMIF neutronics calculations. Fusion Sci Technol. 2012;62:233–239.
  • Goorley T, James M, Booth T, et al. Initial MCNP6 release overview. Nucl Technol. 2012;180:298–315.
  • Kondo K, Arbeiter F, Fischer U, et al. Neutronic analysis for the IFMIF target and test cell using a new CAD-based geometry model. Fusion Eng Des. 2012;87:983–988.
  • Moeslang A, Heinzel V, Matsui H, et al. The IFMIF test facilities design. Fusion Eng Des. 2006;81:863–871.
  • Nakayama S, Watanabe Y. Systematic investigation of spectroscopic factors from (d,p) reactions for deuteron nuclear data evaluation. J Nucl Sci Technol. 2016;53:89–101.
  • Nakayama S, Kouno H, Watanabe Y, et al. Theoretical model analysis of (d,xn) reactions on 9Be and 12C at incident energies up to 50 MeV. Phys Rev C. 2016;94:014618.
  • Nakayama S, Kouno H, Watanabe Y, et al. Development of a code system DEURACS for theoretical analysis and prediction of deuteron-induced reactions. EPJ Web Conf. 2017;146:12025.
  • Nakayama S, Iwamoto O, Watanabe Y. Consistent description of light composite particle emission in deuteron-induced reactions. Phys Rev C. 2019;100:044603.
  • Nakayama S, Furutachi N, Iwamoto O, et al. Role of breakup processes in deuteron-induced spallation reactions at 100–200 MeV/nucleon. Phys Rev C. 2018;98:044606.
  • Jha V, Parkar V, Kailas S. Incomplete fusion reactions using strongly and weakly bound projectiles. Phys Rep. 2020;845:1–58.
  • Yahiro M, Ogata K, Matsumoto T, et al. The continuum discretized coupled-channels method and its applications. Prog Theor Exp Phys. 2012;2012:01A206.
  • Ye T, Hashimoto S, Watanabe Y, et al. Analysis of inclusive (d,xp) reactions on nuclei from 9Be to 238U at 100 MeV. Phys Rev C. 2011;84:054606.
  • Kunz P, Rost E The distorted-wave Born approximation. In: Computational nuclear physics 2. Springer; 1993. p. 88–107.
  • Iwamoto O. Development of a comprehensive code for nuclear data evaluation, CCONE, and validation using neutron-induced cross sections for uranium isotopes. J Nucl Sci Technol. 2007;44:687–697.
  • Iwamoto O, Iwamoto N, Kunieda S, et al. The CCONE code system and its application to nuclear data evaluation for fission and other reactions. Nucl Data Sheets. 2016;131:259–288.
  • Kalbach C. Surface effects in the exciton model of preequilibrium nuclear reactions. Phys Rev C. 1985;32:1157–1168.
  • Kalbach C. Two-component exciton model: basic formalism away from shell closures. Phys Rev C. 1986;33:818–833.
  • Gruppelaar H, Reffo G. Some properties of the width fluctuation factor. Nucl Sci Eng. 1977;62:756–763.
  • Kalbach C. Systematics of continuum angular distributions: extensions to higher energies. Phys Rev C. 1988;37:2350–2370.
  • Capote R, Herman M, Obložinskỳ P, et al. RIPL–reference input parameter library for calculation of nuclear reactions and nuclear data evaluations. Nucl Data Sheets. 2009;110:3107–3214.
  • Bhat M Evaluated nuclear structure data file (ENSDF). In: Proceedings of 1991 International Conference on Nuclear Data for Science and Technology (ND1991); 13th-17th May; Jülich, Germany; 1991. p. 817–821.
  • Koning A, Delaroche J. Local and global nucleon optical models from 1 keV to 200 MeV. Nucl Phys A. 2003;713:231–310.
  • Madland DG Recent results in the development of a global medium-energy nucleon-nucleus optical-model potential. In: Proceedings of A Specialist’s Meeting on Preequilibrium Nuclear Reactions; 10th-12th February; Semmering, Austria; 1988. p. 103–116.
  • An H, Cai C. Global deuteron optical model potential for the energy range up to 183 MeV. Phys Rev C. 2006;73:054605.
  • Avrigeanu M, Avrigeanu V. α-particle nuclear surface absorption below the Coulomb barrier in heavy nuclei. Phys Rev C. 2010;82:014606.
  • Kunieda S, Chiba S, Shibata K, et al. Coupled-channels optical model analyses of nucleon-induced reactions for medium and heavy nuclei in the energy region from 1 keV to 200 MeV. J Nucl Sci Technol. 2007;44:838–852.
  • Kunieda S, Furutachi N, Minato F, et al. JENDL/ImPACT-2018: a new nuclear data library for innovative studies on transmutation of long-lived fission products. J Nucl Sci Technol. 2019;56:1073–1091.
  • Koning A, Duijvestijn M. A global pre-equilibrium analysis from 7 to 200 MeV based on the optical model potential. Nucl Phys A. 2004;744:15–76.
  • Gilbert A, Cameron A. A composite nuclear-level density formula with shell corrections. Can J Phys. 1965;43:1446–1496.
  • Mengoni A, Nakajima Y. Fermi-gas model parametrization of nuclear level density. J Nucl Sci Technol. 1994;31:151–162.
  • Trkov A, Herman M, Brown DA, editors. ENDF-6 formats manual: data formats and procedures for the evaluated nuclear data files ENDF/B-VI, ENDF/B-VII and ENDF/B-VIII. National Nuclear Data Center Brookhaven National Laboratory Upton, NY 11973-5000, USA: Written by the Members of the Cross Sections Evaluation Working Group; 2018.
  • Sato T, Iwamoto Y, Hashimoto S, et al. Features of particle and heavy ion transport code system (PHITS) version 3.02. J Nucl Sci Technol. 2018;55:684–690.
  • Conlin JL, Romano P, Compact A ENDF (ACE) format specification. LA-UR-19-29016. Los Alamos, NM: Los Alamos National Laboratory; 2019.
  • PHITS user’s manual. Tokai, Japan: Japan Atomic Energy Agency. [cited 2020 Dec 22]. Available from: https://phits.jaea.go.jp/
  • MacFarlane RE, Kahler AC. Methods for processing ENDF/B-VII with NJOY. Nucl Data Sheets. 2010;111:2739–2890.
  • Sasa T, Sugawara T, Kosako K, et al. Continuous energy cross section library for MCNP/MCNPX based on JENDL High Energy File 2007 -FXJH7-. JAEA-Data/Code 2008-022. Tokai, Japan: Japan Atomic Energy Agency; 2008.
  • Hagiwara M, Itoga T, Kawata N, et al. Measurement of neutron emission spectra in Li(d, xn) reaction with thick and thin targets for 40-MeV deuterons. Fusion Sci Technol. 2005;48:1320–1328.
  • Ziegler JF, Ziegler MD, Biersack JP. SRIM – the stopping and range of ions in matter (2010). Nucl Instrum Methods Phys Res Sec B. 2010;268:1818–1823.
  • Otuka N, Dupont E, Semkova V, et al. Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between nuclear reaction data centres (NRDC). Nucl Data Sheets. 2014;120:272–276.
  • Watanabe Y, Sadamatsu H, Araki S, et al. Study of the Li(d, xn) reaction for the development of accelerator-based neutron sources. EPJ Web Conf. 2020;239:20012.
  • Boudard A, Cugnon J, David JC, et al. New potentialities of the liège intranuclear cascade model for reactions induced by nucleons and light charged particles. Phys Rev C. 2013;87:014606.
  • Hashimoto S, Iwamoto Y, Sato T, et al. New approach to description of (d, xn) spectra at energies below 50 MeV in Monte Carlo simulation by intra-nuclear cascade code with distorted wave born approximation. Nucl Instrum Methods Phys Res Sec B. 2014;333:27–41.
  • Minomo K, Washiyama K, Ogata K. Deuteron–nucleus total reaction cross sections up to 1 GeV. J Nucl Sci Technol. 2017;54:127–130.
  • Kalbach C. Preequilibrium reactions with complex particle channels. Phys Rev C. 2005;71:034606.
  • Bem P, Burjan V, Gotz M, et al. Neutron spectra from the Li(d,xn) and 7Li(d,n) reactions initiated by 16.3 and 17 MeV deuterons. In: Proceedings of 12th International Seminar on Interaction of Neutrons with Nuclei (ISINN-12); 26th-29th May; Dubna, Russia; 2004. p. 168–175.
  • Hagiwara M, Itoga T, Oishi T, et al. Experimental studies of neutron emission spectra in Li(d,xn) reactions for IFMIF. J Nucl Mater. 2011;417:1284–1287.
  • Araki S, Watanabe Y, Kitajima M, et al. Systematic measurement of double-differential neutron production cross sections for deuteron-induced reactions at an incident energy of 102 MeV. Nucl Instrum Methods Phys Res Sec A. 2017;842:62–70.
  • Weaver K, Anderson J, Barschall H, et al. Neutron spectra from deuteron bombardment of D, Li, Be, and C. Nucl Sci Eng. 1973;52:35–45.
  • Aoki T, Hagiwara M, Baba M, et al. Measurements of differential thick target neutron yields and 7Be production in the Li, 9Be(d, n) reactions for 25 MeV deuterons. J Nucl Sci Technol. 2004;41:399–405.
  • Meulders JP, Leleux P, Macq P, et al. Fast neutron yields and spectra from targets of varying atomic number bombarded with deuterons from 16 to 50 MeV (for radiobiology and radiotherapy). Phys Med Biol. 1975;20:235–243.
  • Hagiwara M, Itoga T, Baba M, et al. Experimental studies on the neutron emission spectrum and activation cross-section for 40 MeV deuterons in IFMIF accelerator structural elements. J Nucl Mater. 2004;329:218–222.