388
Views
7
CrossRef citations to date
0
Altmetric
Article

Theoretical and experimental estimation of the relative optically stimulated luminescence efficiency of an optical-fiber-based BaFBr:Eu detector for swift ions

ORCID Icon, ORCID Icon, , , ORCID Icon &
Pages 915-924 | Received 19 Sep 2021, Accepted 07 Dec 2021, Published online: 09 Jan 2022

References

  • Yukihara EG, McKeever SWS. Optically Stimulated Luminescence: fundamentals and Applications. West Sussex, United Kingdom: Wiley Blackwell; 2011. DOI:https://doi.org/10.1002/9780470977064.
  • Yukihara EG, McKeever SWS. Optically Stimulated Luminescence (OSL) Dosimetry in Medicine. Phys Med Biol. 2008;53:R351–R379.
  • Amemiya Y, Miyahara J. Imaging Plate Illuminates Many Fields. Nature. 1988;336(6194):89–90.
  • Nanto H, Araki T, Daimon M, et al., OPTICALLY STIMULATED LUMINESCENCE IN AN IMAGING PLATE USING BaFI:Eu. 2002;Radiat Prot Dosim Nucl Technol Publ. 100:385–388.
  • Doyama M, Terashima Y, Ozaki A, et al. Imaging Plates as Position-Sensitive Detectors of Positrons Studied by the Slow Positron Beam. Appl Surf Sci. 1999;149(1):71–76.
  • Iwabuchi Y, Nobufumi M, Kenji T, et al., Mechanism of Photostimulated Luminescence Process in BaFBr : eu 2 + Phosphors. Jpn J Appl Phys. 1994;33:178–185.
  • Thoms M, Von Seggern H, Winnacker A. Spatial Correlation and Photostimulability of Defect Centers in the X-Ray-Storage Phosphor BaFBr:Eu2+. Phys Rev B. 1991;44(17):9240–9247.
  • Nanto H. Photostimulable Storage Phosphor Materials and Their Application to Radiation Monitoring. Sensors Mater. 2018;30(3):327–337.
  • Hirata Y, Watanabe K, Uritani A, et al. Correction of Quenching Effect of a Small Size OSL Dosimeter Using Eu:BaFBr and Ce:CaF2. Radiat Meas. 2017;106:246–251.
  • Hirata Y, Watanabe K, Yamazaki A, et al. Basic Evaluation of the Eu:BaFBr and Ce:CaF2 Hybrid Type Optical Fiber Based Dosimeter System for Correction of Quenching Effect under Carbon Ion Irradiation. Prog Nucl Sci Technol. 2019;6:238–242.
  • Kanase G, Sakurai H, Noma M, et al. Development of an Imaging Plate as a Heavy-Nuclide Detector. IEEE Trans Nucl Sci. 1999;46(6 PART 2):1952–1956.
  • Gunji S, Sakurai H, Tokanai F, et al. A Study on Angular and Energy Resolution for Imaging Plate Using Heavy Particles. IEEE Trans Nucl Sci. 2004;51(5 I):2012–2017.
  • Nohtomi A, Sakae T, Terunuma T, et al. Measurement of Depth-Dose Distribution of Protons by an Imaging Plate. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip. 2003;511(3):382–387.
  • Yasuda H, Kobayashi I. Optically Stimulated Luminescence From Al2o3:C Irradiated With Relativistic Heavy Ions. Radiation Protection Dosimetry. 2001;95:339–343.
  • Bilski P, Puchalska M. Relative Efficiency of TL Detectors to Energetic Ion Beams. Radiat Meas. 2010;45(10):1495–1498.
  • Massillon-Jl G, Gamboa-Debuen I, Brandan ME. TL Response of LiF: mg,Ti Exposed to Intermediate Energy 1H, 3He, 12C, 16O and 20Ne Ions. J Phys D Appl Phys. 2007;40(8):2584–2593.
  • Sawakuchi GO, Yukihara EG, McKeever SWS, et al. Relative Optically Stimulated Luminescence and Thermoluminescence Efficiencies of Al2O3:C Dosimeters to Heavy Charged Particles with Energies Relevant to Space and Radiotherapy Dosimetry. J Appl Phys. 2008;104(12):124903.
  • Yukihara EG, Doull BA, Ahmed M, et al. Time-Resolved Optically Stimulated Luminescence of Al2O3:C for Ion Beam Therapy Dosimetry. Phys Med Biol. 2015;60(17):6613–6638.
  • Berger T, Hajek M. TL-Efficiency-Overview and Experimental Results over the Years. Radiat Meas. 2008;43(2–6):146–156.
  • Hirata Y, Watanabe K, Uritani A, et al. Correction of Quenching Effect of a Small Size OSL Dosimeter Using Eu:BaFBr and Ce:CaF2. Radiat Meas. 2017;106. DOI:https://doi.org/10.1016/j.radmeas.2017.03.043
  • Hirata Y, Watanabe K, Yoshihashi S, et al. Particle Dependence of Quenching Effect in an Optical-Fiber-Type Optically Stimulated Luminescence Dosimeter. Sensors Mater. 2017;29(10). DOI:https://doi.org/10.18494/SAM.2017.1626
  • Ogawa T, Yamaki T, Sato T. Analysis of Scintillation Light Intensity by Microscopic Radiation Transport Calculation and Förster Quenching Model. PLoS One. 2018;13(8):1–19.
  • Parisi A, Van Hoey O, Mégret P, et al. MICRODOSIMETRIC MODELING of the RELATIVE LUMINESCENCE EFFICIENCY of LiF:Mg,Cu,P (MCP) DETECTORS EXPOSED to CHARGED PARTICLES. Radiat Prot Dosimetry. 2019;183(1–2):172–176.
  • Parisi A, Van Hoey OV, Vanhavere F. Microdosimetric Modeling of the Relative Luminescence Efficiency of LiF: mg,Ti (Mts) Detectors Exposed to Charged Particles. Radiat Prot Dosimetry. 2018;180(1–4):192–195.
  • Parisi A, Olko P, Swakoń J, et al. A New Method to Predict the Response of Thermoluminescent Detectors Exposed at Different Positions within a Clinical Proton Beam. Radiat Meas. 2020;133:106281.
  • Parisi A, Van Hoey O, Mégret P, et al. Microdosimetric Specific Energy Probability Distribution in Nanometric Targets and Its Correlation with the Efficiency of Thermoluminescent Detectors Exposed to Charged Particles. Radiat Meas. 2019;123:1–12.
  • Parisi A, Sawakuchi G, Granville D, et al. Microdosimetric Modeling of the Relative Efficiency of Al 2O3:C (Luxel, Blue Emission) Optically Stimulated Luminescent Detectors Exposed to Ions from 1H to 132Xe. Radiat Meas. 2021;106678. DOI:https://doi.org/10.1016/j.radmeas.2021.106678
  • Edmund JM, Andersen CE, Greilich S. A Track Structure Model of Optically Stimulated Luminescence from Al2O3:C Irradiated with 10-60 MeV Protons. Nucl Instrum Methods Phys Res, Sect B. 2007;262(2):261–275.
  • Horowitz YS. The Theoretical and Microdosimetric Basis of Thermoluminescence and Applications to Dosimetry. Phys Med Biol. 1981;26(5):765–824.
  • Olko P, Bilski P, Budzanowski M, et al. Microdosimetric Modelling of the Response of Thermoluminescence Detectors to Low- and High-LET Ionising Radiation. Radiat Prot Dosimetry. 2006;122(1–4):378–381.
  • Olko P, Bilski P, El-Faramawy NA, et al. On the Relationship between Dose-, Energy- and LET-Response of Thermoluminescent Detectors. Radiat Prot Dosimetry. 2006;119(1–4):15–22.
  • Olko P. Microdosimetry, Track Structure and the Response of Thermoluminescence Detectors. Radiat Meas. 2006;41(SUPPL. 1):57–70.
  • ICRU REPORT 36 Microdosimetry. USA; 1983.
  • Sato T, Iwamoto Y, Hashimoto S, et al. Features of Particle and Heavy Ion Transport Code System (PHITS) Version 3.02. J Nucl Sci Technol. 2018;55(6):684–690.
  • Olko P, Bilski P, El-Faramawy NA, et al. On The Relationship Between Dose-, Energy-And Let-Response Of Thermoluminescent Detectors. Radiation Protection Dosimetry. 2006;119(1–4):15–22.
  • Horowitz Y. Microdosimetric Response of Physical and Biological Systems to Low-and High-LET Radiations. Elsevier; 2006. DOI:https://doi.org/10.1016/B978-0-444-51643-5.X5011-4.
  • Sato T, Watanabe R, Niita K. Development of a Calculation Method for Estimating Specific Energy Distribution in Complex Radiation Fields. Radiat Prot Dosimetry. 2006;122(1–4):41–45.
  • Sato T, Kase Y, Watanabe R, et al. Biological Dose Estimation for Charged-Particle Therapy Using an Improved PHITS Code Coupled with a Microdosimetric Kinetic Model. Radiat Res. 2009;171(1):107–117.
  • Ogawa T, Sato T, Hashimoto S, et al. Energy-Dependent Fragmentation Cross Sections of Relativistic C 12. Phys Rev C Nucl Phys. 2015;92(2):1–14.
  • Boudard A, Cugnon J, David JC, et al. New Potentialities of the Liège Intranuclear Cascade Model for Reactions Induced by Nucleons and Light Charged Particles. Phys Rev C Nucl Phys. 2013;87(1). DOI:https://doi.org/10.1103/PhysRevC.87.014606.
  • Shibata K, Iwamoto O, Nakagawa T, et al. JENDL-4.0: a New Library for Nuclear Science and Engineering. J Nucl Sci Technol. 2011;48(1):1–30.
  • Ogawa T, Sato T, Hashimoto S, et al. Development of a Reaction Ejectile Sampling Algorithm to Recover Kinematic Correlations from Inclusive Cross-Section Data in Monte-Carlo Particle Transport Simulations. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip. 2014;763:575–590.
  • Hirayama H, Namito Y, Bielajew AF et al. The EGS5 code system SLAC-R-730 and KEK Report 2005-8. Tsukuba,Japan and Menlo Park, USA: High Energy Accelerator Research Organization (KEK) and Stanford Linear Accelerator Center (SLAC) ; 2005 .
  • Ploc O, Dachev T, Uchihori Y, et al. Fragmentation from Heavy Ion Beams in HIMAC BIO Room Calculated with PHITS and Measured with Liulin. IEEE Aerosp Conf Proc2. 2017; 1–10. DOI:https://doi.org/10.1109/AERO.2017.7943842.
  • Nakahashi K, Uritani A, Watanabe K. Development of Micro Radiation Detector Using Photostimulable Phosphor and Optical Fibers. Proceedings, 24th Work. Radiat. Detect. Their Uses, 2010, 155–161.
  • Horowitz YS, Rosenkrantz M, Mahajna S, et al. The Track Interaction Model for Alpha Particle Induced Thermoluminescence Supralinearity: dependence of the Supralinearity on the Vector Properties of the Alpha Particle Radiation Field. J Phys D Appl Phys. 1996;29(1):205–217.
  • Koschnick FK, Spaeth JM, Eachus RS, et al. Experimental Evidence for the Aggregation of Photostimulable Centers in BaFBr:Eu2+ Single Crystals by Cross Relaxation Spectroscopy. Phys Rev Lett. 1991;67(25):3571–3574.
  • Horowitz YS. Theory of Thermoluminescence Gamma Dose Response: the Unified Interaction Model. Nucl Instrum Methods Phys Res, Sect B. 2001;184(1–2):68–84.
  • Ziegler JF, Ziegler MD, Biersack JP. SRIM - The Stopping and Range of Ions in Matter (2010). Nucl Instrum Methods Phys Res, Sect B. 2010;268(11–12):1818–1823.
  • Kobayashi M. Radiation Measurement With Scintillators. 2nd ed. V2-Solution; 2018.
  • Moszyński M, Ludziejewski T, Wolski D, et al. Properties of the YAG:Ce Scintillator. Nucl Inst Methods Phys Res A. 1994;345(3):461–467.
  • Fawad U, Kim HJ, Park H, et al. Czochralski Growth and Scintillation Properties of Li6LuxY1-x(BO3)3:Ce3+ Single Crystals. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip. 2015;806:117–122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.