916
Views
2
CrossRef citations to date
0
Altmetric
Article

Nonuniform particle distribution and interference between removal mechanisms during unsteady aerosol deposition from a rising spherical bubble

ORCID Icon, &
Pages 1037-1046 | Received 18 Sep 2021, Accepted 06 Jan 2022, Published online: 22 Feb 2022

References

  • López-Jiménez J, Herranz LE, Escudero MJ, et al. Pool scrubbing. Spain: Centro de Investigaciones Energeticas; 1996. (CIEMAT–805).
  • Berzal ME, Crespo MJM, Swiderska-Kowalczyk M, et al. State of the art review on fission product aerosol pool scrubbing under severe accident conditions. Poland: European Commission; 1994. (INIS-PL–0001).
  • Berna C, Escrivá A, Munõz-Cobo JL, et al. Enhancement of the SPARC90 code to pool scrubbing events under jet injection regime. Nucl Eng Des. 2016;300:563–577.
  • Zhao YF, Irons GA. The breakup of bubbles into jets during submerged gas injection. Metall Trans B. 1990;21:997–1003.
  • Cherrier G, Belut E, Gerardin F, et al. Aerosol particles scavenging by a droplet: microphysical modeling in the Greenfield gap. Atmos Environ. 2017;166:519–530.
  • Dehbi A, Suckow D, Guentay S. Aerosol retention in low-subcooling pools under realistic accident conditions. Nucl Eng Des. 2001;203:229–241.
  • Kanai T, Furuya M, Arai T, et al. Development of an aerosol decontamination factor evaluation method using an aerosol spectrometer. Nucl Eng Des. 2016;303:58–67.
  • Pich J, Schütz W. On the theory of particle deposition in rising gas bubbles: the absorption minimum. J Aerosol Sci. 1991;22:267–272.
  • Park SH, Park C, Lee JY, et al. A general solution for the removal of polydisperse aerosol particles and application to pool scrubbing. Part Sci Technol. 2018;36:552–559.
  • Li Y, Sun Z, Gu H, et al. Deposition characteristic of micro-nano soluble aerosol under bubble scrubbing condition. Ann Nucl Energy [Internet]. 2019;133:881–888.
  • Kim YH, Kam DH, Yoon J, et al. The importance of representative aerosol diameter and bubble size distribution in pool scrubbing. Ann Nucl Energy. 2020;147:107712.
  • Lee Y, Cho YJ, Ryu I. Preliminary analyses on decontamination factors during pool scrubbing with bubble size distributions obtained from EPRI experiments. Nucl Eng Technol. 2021;53:509–521.
  • Becker KF, Anderson MH. Experimental study of SRT scrubbing model in water coolant pool. Nucl Eng Des. 2021;377:111130.
  • Powers DA, Brockmann JE, Shiver AW. VANESA : a mechanistic model of radionuclide release and aerosol generation during core debris. Albuquerque, NM: Sandia National Labs; 1986. (NUREG/CR-4308; SAND-85-1370).
  • Owczarski PC, Burk KW. SPARC-90: a code for calculating fission product capture in suppression pools. United States: Nuclear Regulatory Commission; 1991. (NUREG/CR–5765).
  • Ramsdale SA, Güntay S, Friederichs HG. BUSCA-JUN91 reference manual. Switzerland: Paul Scherrer Institute(PSI); 1995. (PSI–95-05).
  • Wassel AT, Mills AF, Bugby DC. Analysis of radionuclide retention in water pools. Nucl Eng Des. 1985;90:87–104.
  • Fuchs NA. The mechanics of aerosols. revised and enlarged ed. (translated from the Russian by R.E. Daisley and Marina Fuchs, translation edited by C.N. Davies). New York (NY): Pergamon Press; 1964.
  • Higbie R. The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans AIChE. 1935;31:365–389.
  • Mills AF, Hoseyni MS. Diffusive deposition of aerosols in a rising bubble. Aerosol Sci Technol. 1988;8:103–105.
  • Ghiaasiaan SM, Yao GF. Diffusive and convective deposition of aerosols in rising spherical bubbles with internal circulation. Int J Multiph Flow. 1995;21:907–918.
  • Ghiaasiaan SM, Yao GF. A theoretical model for deposition of aerosols in rising spherical bubbles due to diffusion, convection, and inertia. Aerosol Sci Technol. 1997;26:141–153.
  • Laker TS, Ghiaasiaan SM. Monte-carlo simulation of aerosol transport in rising spherical bubbles with internal circulation. J Aerosol Sci. 2004;35:473–488.
  • Clift R, Grace JR, Weber ME. Bubbles, drops, and particles. NewYork (NY): Academic Press; 1978.
  • Hill MJM. On a spherical vortex. Philos Trans R Soc London. 1894;185:213–245.
  • Peebles FN, Garber HJ. Studies on the motion of gas bubbles in liquids. Chem Eng Prog. 1953;49:88–97.
  • Holland FA, Bragg R. Fluid flow for chemical engineers. Great Britain: Elsevier; 1973.
  • Akbar MK, Ghiaasiaan SM. Monte Carlo simulation of aerosol transport in rising gas bubbles undergoing shape deformation. J Aerosol Sci. 2006;37:735–749.
  • Hinds WC. Aerosol technology: properties, behavior, and measurement of airborne particles. New York (NY): John Wiley & Sons; 1999.
  • Crowe GT. Review-numerical models for dilute gas-particle flows. J Fluids Eng Trans ASME. 1982;104:297–303.
  • Maxey MR, Riley JJ. Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids. 1983;26:883.
  • Squires K. Point-particle methods for disperse flows. Prosperetti A, Tryggvason G, editors. Cambridge: Computational Methods for Multiphase Flow; 2007.
  • Davies CN. Definitive equations for the fluid resistance of spheres. Proc Phys Soc. 1945;57:259–270.
  • Li A, Ahmadi G. Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol Sci Technol. 1992;16:209–226.
  • Abouali O, Nikbakht A, Ahmadi G, et al. Three-dimensional simulation of Brownian motion of nano-particles in aerodynamic lenses. Aerosol Sci Technol. 2009;43:205–215.
  • Calderbank PH, Korchinski IJO. Circulation in liquid drops (A heat-transfer study). Chem Eng Sci. 1956;6:65–78.
  • Kronig R, Brink JC. On the theory of extraction from falling droplets. Appl Sci Res. 1951;2:142–154.
  • Colombet D, Legendre D, Cockx A, et al. Mass or heat transfer inside a spherical gas bubble at low to moderate Reynolds number. Int J Heat Mass Transf. 2013;67:1096–1105.
  • Juncu G. A numerical study of the unsteady heat/mass transfer inside a circulating sphere. Int J Heat Mass Transf. 2010;53:3006–3012.