1,200
Views
5
CrossRef citations to date
0
Altmetric
Article

Designs and neutronic characteristics of an epithermal neutron moderator at ambient temperature for neutron time-of-flight measurements

, , , , &
Pages 1546-1557 | Received 01 Dec 2021, Accepted 25 Apr 2022, Published online: 06 Jun 2022

References

  • Schillebeeckx P, Becker B, Danon Y, et al. Determination of resonance parameters and their covariances from neutron induced reaction cross section data. Nucl Data Sheets. 2012;113(12):3054–3100.
  • Lee J, Nishiyama J, Hori J, et al. Neutron total cross section measurements of polyethylene using time-of-flight method at KURNS-LINAC. J Nucl Sci Technol. 2020;1(1):1–8.
  • Schillebeeckx P, Becker B, Harada H, et al. Neutron resonance spectroscopy for the characterization of materials and objects. J Instrum. 2012;7(3):C03009.
  • Kiyanagi Y. Neutron Imaging at Compact Accelerator-Driven Neutron Sources in Japan. J Imaging. 2018;4(4):55.
  • Kamiyama T, Sato H, Miyamoto N, et al. Energy sliced neutron tomography using neutron resonance absorption spectrometer. Nucl Instr Meth Phys Res A. 2009;600(1):107–110.
  • Takahashi Y, Kiyanagi Y, Watanabe K, et al. Development of a neutron source for imaging at the electron linac facility in Kyoto University research reactor institute. Phys B Condens Matter. 2018;551:488–491.
  • Mondelaers W, Schillebeeckx P. GELINA, a neutron time-of-flight facility for high-resolution neutron data measurements. Notiziario. 2006;11:19–25.
  • Anderson IS, Andreani C, Carpenter JM, et al. Research opportunities with compact accelerator-driven neutron sources. Phys Reports. 2016;654:1–58.
  • Kobayashi T, Ikeda S, Otake Y, et al. Completion of a new accelerator-driven compact neutron source prototype RANS-II for on-site use. Nucl Instr Meth Phys Res A. 2021;994:165091.
  • Sato H, Kamiyama T, Kiyanagi Y. Pulsed neutron imaging using resonance transmission spectroscopy. Nucl Instr Meth Phys Res A. 2009;605(1–2):36–39.
  • Ito D, Takahashi Y, Sano T, et al. Identification and quantification of nuclear nuclides using a pulsed neutron imaging technique. JPS Conf Proc. 2019;24:011018.
  • Paradela C, Alaerts G, Heyse J, et al. Neutron Resonance Analysis System Requirements. Publications Office of the European Union; 2016. (Report no. EUR 28239 EN).
  • Tsuchiya H, Kitatani F, Maeda M, et al. Development of neutron resonance transmission analysis as a non-destructive assay technique for nuclear nonproliferation. Plasma Fusion Res. 2018;13:2406004.
  • Kusumawati Y, Ozawa I, Mitsuya Y, et al. X-band electron LINAC-based compact neutron source for nuclear debris on-site screening using short-distance neutron resonance transmission analysis. E-J Adv Maint. 2019;11:46–64.
  • Engel EM, Klein EA, Danagoulian A. Feasibility study of a compact neutron resonance transmission analysis instrument. AIP Adva. 2020;10:1015051.
  • Kopecky S, Heyse J, Paradela C, et al. Study of a compact NRA system. publications office of the European union; 2016. (Report no. EUR 28245 EN).
  • Klein EA, Naqvi F, Bickus JE, et al. Neutron-resonance transmission analysis with a compact deuterium-tritium neutron generator. Phys Rev Applied. 2021;15(5):054026.
  • Bang W, Dyer G, Quevedo HJ, et al. Optimization of the neutron yield in fusion plasmas produced by Coulomb explosions of deuterium clusters irradiated by a petawatt laser. Phys Rev E. 2013;87(2):023106.
  • Petrov GM, Higginson DP, Davis J, et al. Generation of high-energy (>15 MeV) neutrons using short pulse high intensity lasers. Phys Plasmas. 2012;19(9):093106.
  • Mirfayzi SR, Alejo A, Ahmed H, et al. Experimental demonstration of a compact epithermal neutron source based on a high power laser. Appl Phys Lett. 2017;111(4):04410.
  • Mirfayzi SR, Yogo A, Lan Z, et al. Proof-of-principle experiment for laser-driven cold neutron source. Sci Rep. 2020;10(1):20157.
  • Macchi A, Borghesi M, Passoni M. Ion acceleration by superintense laser-plasma interaction. Rev Mod Phys. 2013;85(2):751–793.
  • Tanaka H, Kurosawa S, Yamaji A, et al. Evaluation of neutron pulse width in laser-driven neutron source using organic scintillator; Proc. 2019 IEEE NSS/MIC, 2019 Oct 26 - Nov 2; Manchester, UK; 2020.
  • Day DH, Sinclair RN. Neutron moderator assemblies for pulsed thermal neutron time-of-flight experiments. Nucl Instr Meth. 1969;72(3):237–253.
  • Mildner DFR, Boland BC, Sinclair RN, et al. A cooled polyethylene moderator on a pulsed neutron source. Nucl Instr Meth. 1978;152(2–3):437–446.
  • Kiyanagi Y, Iwasa H. Pulsed Neutron intensity from rectangular shaped light water moderator with fast-neutron reflector. J Nucl Sci Technol. 1982;19(5):352–358.
  • Kiyanagi Y. Neutronics of polyethylene thermal moderator of wing and slab geometries on pulsed neutron source. J Nucl Sci Technol. 1985;22(11):934–938.
  • Robinson RA, Carpenter JM. On the use of switch functions in describing pulsed neutron moderators. Nucl Instr Meth Phys Res A. 1991;307(2–3):359–365.
  • Kiyanagi Y, Watanabe N, Iwasa H. Premoderator studies for a coupled liquid-hydrogen moderator in pulsed spallation neutron sources. Nucl Instr Meth Phys Res A. 1994;343(2–3):558–562.
  • Sordo F, Fernandez-Alonso F, Terron S, et al. Baseline design of a low energy neutron source at ESS-Bilbao. Phys Procedia. 2014;60:125–137.
  • Maekawa F, Harada M, Oikawa K, et al. First neutron production utilizing J-PARC pulsed spallation neutron source JSNS and neutronic performance demonstrated. Nucl Instr Meth Phys Res A. 2010;620(2–3):159–165.
  • Iked Y, Taketani A, Takamura M, et al. Prospect for application of compact accelerator-based neutron source to neutron engineering diffraction. Nucl Instr Meth Phys Res A. 2016;833:61–67.
  • Michaudon A. The production of moderated neutron beams from pulsed accelerators. Reactor Sic Technol. 1963;17:165–186.
  • Kai T, Teshigawara M, Watanabe N, et al. Optimization of coupled hydrogen moderator for a short pulse spallation source. J Nucl Sci Technol. 2002;39(2):120–128.
  • Kiyanagi Y. Effects of reflector on intensity of thermal neutrons emitted from moderator for pulsed neutron source. J Nucl Sci Technol. 1987;24(6):490–497.
  • Sato T, Iwamoto Y, Hashimoto S, et al. Features of particle and heavy ion transport code system (PHITS) version 3.02. J Nucl Sci Technol. 2018;55(6):684–690.
  • Shibata K, Iwamoto O, Nakagawa T, et al. JENDL4.0: a new library for nuclear science and engineering. J Nucl Sci Technol. 2011;48(1):1–30.
  • Beckurts KH, Wirtz K. Neutron Physics. Berlin: Springer; 1964.
  • Iked Y. Current status of 1 MW pulse spallation neutron source (JSNS) of J-PARC. J Nucl Mater. 2005;343(1–3):7–13.
  • Iked Y. J-PARC status update. Nucl Instr Meth Phys Res A. 2009;600(1):1–4.
  • Kino K, Furusaka M, Hiraga F, et al. Energy resolution of pulsed neutron beam provided by the ANNRI beamline at the J-PARC/MLF. Nucl Instr Meth Phys Res A. 2014;736:66–74.
  • Sano T, Hori J, Takahashi Y, et al. Analysis of energy resolution in the KURRI-LINAC pulsed neutron facility. Plompen A, Hambsch FJ, Schellebeecks P, et al. editors. Proc. ND 2016. 2016 Sep 11-16 Bruges Belgium Les Ulis Cedex:EDP sciences. 2017 Vol. 146. 03031.
  • Fuchs J, Antici P, d’Humières E, et al. Laser-driven proton scaling laws and new paths towards energy increase. Nature Phys. 2006;2(1):48–54.
  • Anderson IS, Andreani C, Carpenter JM, et al. Research opportunities with compact accelerator-driven neutron sources. Phys Rep. 2016;654:1–58.
  • Takagi Y, Iwata N, Humieres E, et al. Multivariate scaling of maximum proton energy in intense laser driven ion acceleration. Phys Review Res. 2021;3(4):043140.
  • Morrison JT, Feister S, Frische KD, et al. MeV proton acceleration at kHz repetition rate from ultra-intense laser liquid interaction. New J Phys. 2018;20(2):022001.