170
Views
0
CrossRef citations to date
0
Altmetric
Article

Research on rare-earth element reaction processes with fuel cladding materials in FBR

, , &
Pages 562-572 | Received 17 Jun 2022, Accepted 09 Sep 2022, Published online: 28 Sep 2022

References

  • Advanced Reactors Information System (ARIS). Advances in small modular reactor technology developments (2020 Edition) IAEA 2020.
  • Toshiba Corporation and Central Research Institute of Electric Power Industry. SUPER-SAFE, SMALL AND SIMPLE REACTOR (4S, TOSHIBA DESIGN): IAEA ARIS database. 2013.
  • Toshiba energy systems&solutions corporation. status report-4S: IAEA ARIS database; 2019, (A1-2019-000211 R1 PSNN-2019-0528)
  • Gilleland J, Petroski R, Weaver K. The traveling wave reactor. Design Dev, Eng. 2016;2:88–96.
  • Tokiwai M, Horie M, Kako K, et al. Development of new ferritic steels as cladding material for metallic fuel fast breeder reactor. J Nucl Mater. 1993;204:56–64.
  • Ukai S, Harada M, Okada H, et al. Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials. J Nucl Mater. 1993;204:65–73.
  • D. D. Keiser, Jr. 3.15 Metal Fuel-Cladding Interaction Konings, Rudy J.M. .Comprehensive Nuclear Materials. Amsterdam: Elsevier Ltd; 2012. 3., 423–441
  • Dennis D K, Jr. Fuel cladding chemical interaction in metallic sodium fast reactor fuels: a historical perspective. J Nucl Mater. 2019;514:393–398.
  • Inagaki K, Ogata T. Reaction of lanthanide elements with Fe–Cr alloy. J Nucl Mater. 2013;441:574–578.
  • Lee E.B, Lee B.O, Shim W-Y et al, Correlation between rare earth elements in the chemical interactions of HT9 cladding. Nucl Eng Technol. 2018;50(6):915–922.
  • Mariani R.D, Porter D.L, O’Holleran T. P et al, et al. Lanthanides in metallic nuclear fuels: their behavior and methods for their control. J Nucl Mater. 2011;419(1–3):263–271.
  • Tanaka K, Maeda K. FCCI behavior of high-strength ferritic/martensitic steel (PNC-FMS) cladding fuel pins. Results of interim post irradiation examinations of FMS-1 irradiation test. Tokai, Ibaraki, Japan: Japan Nuclear Cycle Development Inst; 2004, ( JNC-TN-9430-2004-006) [in Japanese]
  • Yano Y, Tanno T, Sekio Y et al, Tensile properties and hardness of two types of 11Cr-ferritic/martensitic steel after aging up to 45,000h. Nucl Mater Energy. 2016;9:324–330.
  • Ogata, T : 3.01 Metal Fuel Konings, Rudy J.M. Comprehensive Nuclear Materials; Amsterdam: Elsevier Ltd; 2012. 3., 1–40
  • Dorofeyev Y.A, Men’shikov A.Z, Takzey G.A. MAGNETIC PHASE DIAGRAM OF Fe~x~Cr~1-x~ ALLOYS. Phys. Met. Metallogr. PHMMA6. 1983;55:102–109.
  • Fuerst C.D, Pinkerton F.E, Herbst J.F. Structural and magnetic properties of R 3 (Fe,T) 29 compounds. J Appl Phys. 1994;76(10):6144–6146.
  • Parker F.T, Oesterreicher H, Fullerton E. Mössbauer effect determination of chemical segregation in sputtered Co‐Cr films. J Appl Phys. 1989;66:5988–6000.
  • Duc N.H, Hien T.D. Magnetic properties of (Ce,R)(Fe,Al)2 compounds. J Magn Magn Mater. 1995;140-144:1113–1114.
  • Zhang W, Han K, Massalski T. B, Binary Alloy Phase Diagrams (2nd Ed). Ohio: ASM International Ltd; 1990. 2. 1055–1059
  • Lo W-Y, Silva N, Wu Y et al, Effects of Cr on the interdiffusion between Ce and Fe–Cr alloys. J Nucl Mater. 2015;458:264–271.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.