2,589
Views
3
CrossRef citations to date
0
Altmetric
Review

Corrosion behavior of zirconium alloys in the aqueous environment. Phenomenological aspects. Overview

&
Pages 573-602 | Received 31 Mar 2022, Accepted 05 Sep 2022, Published online: 29 Jan 2023

References

  • Whitmarsh C. Review of Zirkolay-2 and zirkolay-4 properties relevant to N.S. Savannah reactor design. (TN): OAK Ridger National Laboratory, OAK Ridg; 1962.
  • Parfenov B, Gerasimov V, Venediktova G. Corrosion of Zr and its alloys (in Russia). Moscow: Atomizdat; 1967. p. 246.
  • Lemaignan C, Motta AT. Chapter 7: zirconium alloy in nuclear applications. In: Cahn RW, Haasen P, Kramer EJ, editors. Materials science and technology. Vol. 10B. Weinheim (Germany): VCH Verlagsgesellschaft mbH; 1994. p. 1–51.
  • Schweitzer P. Metallic materials: physical, mechanical, and corrosion properties. Bosa Roca, United States: Taylor & Francis Inc; 2003.
  • Adamson R, Rudling P. Manufacturing of Zr alloy materials. Molnlycke, Sweden: ANT International; 2004. (ZIRAT6/IZNA1 special topics report).
  • Cox B. Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys. J Nucl Mater. 2005;336(2–3):331–368.
  • Lemaignan C. Corrosion of zirconium alloy components in light water reactors. In: Cramer SD, Covino BS Jr., editors. Corrosion: environments and Industries. Vol. 13C. Metals Park (OH): ASM International; 2006. p. 415–420.
  • I. A. E. AGENCY. Corrosion of zirconium alloys in nuclear power plants. Vienna: IAEA; 1993. (IAEA-TECDOC-684).
  • Allen TR, Konings RJM, Motta AT, et al. Corrosion of zirconium alloys. In: Comprehensive nuclear materials. Vol. 5. Oxford (UK): Elsevier Ltd; 2012. p. 49–68.
  • Rudling P, Adamson R, Garzarolli F, et al. Zr alloy corrosion and hydrogen pickup. Mölnlycke (Sweden): ANT International; 2013.
  • Motta A, Couet A, Comstock RJ. Corrosion of zirconium alloys used for nuclear fuel cladding. Ann Rev Mater. 2015;45(1):311–343.
  • Kim Y-S, Jeong Y-H, Jang J-N. Stress measurements during thin film zirconium oxide growth. J Nucl Mater. 2011;412(2):217–220.
  • Adamson RB, Cox B, Garzarolli F, et al. Corrosion of zirconium alloys. Molnlycke, Sweden:ANT International; 2002/2003. (ZIRAT7 special topics report).
  • Hillner E. Corrosion of zirconium base alloys — an overview. In: Zirconium in the Nuclear Industry: 3rd Int’l Symposium; West Conshohocken, PA; 1977.
  • Motta A, Capolungo L, Chen L-Q, et al. Hydrogen in zirconium alloys: a review. J Nucl Mater. 2019;518:440–460.
  • Stansbury EE, Buchanan RA. Fundamentals of electrochemical corrosion, materials park. Ohio: ASM International; 2000.
  • Adamson R, Garzarolli F, Cox B, et al. Corrosion mechanisms in zirconium alloys. Skultuna, Sweden: ANT International; 2007. (IZNA7 special topic report).
  • Haurais F. In: Evaluate the contribution of the fuel cladding oxidation process on the hydrogen production from the reflooding during a potential severe accident in a nuclear reactor. Saint-Aubin, France: Université Paris-Saclay; 2016.
  • Reidy RF, Simkovich G. Electrical conductivity and point defect behaviour in ceria-stabilized zirconia. Solid State Ion. 1993;62(1–2):85–97.
  • French RH, Glass SJ, Ohuchi FS, et al. Experimental and theoretical determination of the electronic-structure and optical properties of 3 phases of ZrO2. Phys Rev B. 1994;49(8):5133–5141.
  • Valot C, Ciosmak D, Lallemant M. Spatiotemporal dynamics in the oxidation of groups IV-V metals: study of zirconium. Solid State Ion. 1997;101-103:769–774.
  • Srinivasan R, Rice L, Davis B. Critical particle size and phase transformation in zirconia: transmission electron microscopy and X-ray diffraction studies. J Am Ceram Soc. 1990;73(11):3528–3530.
  • Gosmain L, Valot C, Ciosmak D, et al. Study of stress effects in the oxidation of Zircaloy-4. Solid State Ion. 2001;141-142:633–640.
  • Chao C-Y, Lin LF, Macdonald D. A point defect model for anodic passive films. I. Film growth kinetics. J Electrochem Soc. 1981;128(6):1187–1194.
  • Yoo H-I, Koo B-J, Honh J-O, et al. A working hypothesis on oxidation kinetics of zircaloy. J Nucl Mater. 2001;299(3):235–241.
  • Schefold J, Lincot D, Ambard A, et al. The cyclic nature of corrosion of Zr and Zr-Sn in high-temperature water (633 K): a long-term in situ impedance spectroscopic study. J Electrochem Soc. 2003;150(10):B451–B461.
  • Betova I, Bojinov M, Laitinen T, et al. The transpassive dissolution mechanism of highly alloyed stainless steels I. Experimental results and modelling procedure. Corros Sci. 2002;44(12):2675–2697.
  • Krausova A, Macak J, Sajdl P, et al. In-situ electrochemical study of Zr1nb alloy corrosion in high temperature Li+ containing water. J Nucl Mater. 2015;467(Part_1):302–310.
  • Barberis P, Frichet A. Characterization of zircaloy-4 oxide layers by impedance spectroscopy. J Nucl Mater. 1999;273(2):182–191.
  • Renciukova V, Macak J, Sajdl P, et al. Corrosion of zirconium alloys demonstrated by using impedance spectroscopy. J Nucl Mater. 2018;510:312–321.
  • Tupin M, Pijolat M, Valdivieso F, et al. Differences in reactivity of oxide growth during the oxidation of zircaloy-4 in wate rvapour before and after the kinetic transition. J Nucl Mater. 2003;317(2–3):130–144.
  • Peters H. Improved characterisation of aqueous corrosion kinetics of zircaloy-4. Philadelphia (PA): American Society for Testing and Materials; 1984.
  • Wei J, Frankel P, Polatidis E, et al. The effect of Sn on autoclave corrosion performance and corrosion mechanisms in Zr–Sn–Nb alloys. Acta Materialia. 2013;61(11):4200–4214.
  • Lyapin A, Jeurgens L, Mittemeijer E. Effect of temperature on the initial, thermal oxidation of zirconium. Acta Materialia. 2005;53(10):2925–2935.
  • Simic N. Anodic Films on Cadmium and Binary Zirconium Alloys [PhD Thesis]. Göteborg (Sweden): Göteborg University; 2000.
  • Iglesias F, Lewis B, Desgranges C. Clad-coolant chemical interaction (NEA-NSC-R--2015-5) State-of-the-Art Report on Multi-scale Modelling of Nuclear Fuels. In: Nuclear Energy Agency of the OECD (NEA): 2015;pp. 108–122.
  • Motta A. Waterside corrosion in zirconium alloys. JOM. 2011;63(8):59–63.
  • Nicholls RJ, Ni N, Lozano-Perez S, et al. Crystal structure of the ZrO phase at zirconium/zirconium oxide interfaces. Adv Eng Mater. 2015;17(2):211–215.
  • De Gabory B, Motta A, Wang K. Transmission electron microscopy characterization of Zircaloy-4 and ZIRLO™ oxide layers. J Nucl Mater. 2015;456:272–280.
  • Motta AT, Couet A, Comstock RJ. Corrosion of zirconium alloys used for nuclear fuel cladding. Ann Rev Mater. 2015;45(1):311–343.
  • Yilmazbayhan A, Motta A, Comstock R, et al. Structure of zirconium alloy oxides formed in pure water studied with synchrotron radiation and optical microscopy: relation to corrosion rate. J Nucl Mater. 2004;324(1):6–22.
  • Preuss M, Frankel P, Lozano-Perez S. Towards a mechanistic understanding of corrosion mechanisms in zirconium alloys. In Zirconium in the nuclear industry: 16th Int’l Symposium; Chengdu, China; 2010.
  • Yilmazbayhan A, Breval E, Motta A, et al. Transmission electron microscopy examination of layers formed on Zr alloys. J Nucl Mater. 2006;349(3):265–281.
  • Adamson RB, Cox B, Garzarolli F, et al. ZIRAT11/IZNA6 annual report. Molnlycke, Sweden: ANT International; 2006/2007.
  • Wang P. Corrosion Behaviour of Zirconium Alloys in High Temperature Aqueous Environment By Electrochemical Impedance Spectroscopy [PhD Thesis]. University of Manchester: Corrosion & Protection Centre; 2011.
  • Tang C, Stuebr M, Seifert H, et al. Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings. Corros Rev. 2017;35(3):141–165.
  • Agency IAE. Waterside corrosion of zirconium alloys in nuclear power plants. IAEA-TECDOC-996. Vienna: IAEA; 1998.
  • Cox B, Ungurelu M, Wong YM, et al. Mechanisms of LiOH degradation and H3BO3 repair of ZrO2. In: Zirconium in the nuclear industry: 11th Int’l Symposium; Garmisch-Partenkirchen (Germany); 1996.
  • Polatidis E, Frankela P, Weia J, et al. Residual stresses and tetragonal phase fraction characterisation of corrosion tested Zircaloy-4 using energy dispersive synchrotron X-ray diffraction. J Nucl Mater. 2013;432(1–3):102–112.
  • Lustman B, Kerze F, Straumanis ME. The metallurgy of zirconium. J Electrochem Soc. 1957;104(12):254C.
  • Zima G. A review of the properties of zircaloy-2. 1959. (Technical Report No HW-60908).
  • Banerjee S, Kamath HS. Materials for nuclear reactor. 2005. (Technical Report).
  • Hong H, Kim S, Lee K. Influence of dilute silicon addition on the oxidation resistance and tensile properties of modified Zircaloy-4. J Nucl Mat. 2002;304(1):8–14.
  • Nikulina A, Shishow S, Cox B, et al. Manufacturing of Zr-Nb Alloys. ANT International, Skultuna (Sweden), 2006; ZIRAT-11 Special Topic Report.
  • Mondal K, Chatterjee UK, Murty BS. Oxidation behavior of multicomponent Zr-based amorphous alloys. J Alloys Compd. 2007;433(1–2):162–170.
  • Park J, Kim H, Jeong Y, et al. Crystal structure and grain size of Zr oxide characterized by synchrotron radiation microdiffraction. J Nucl Mater. 2004;335(3):433–442.
  • Jeong Y, Kim HG, Kim DJ. Influence of Nb concentration in the -matrix on the corrosion behavior of Zr-xNb binary alloys. J Nucl Mater. 2003;323(1):72–80.
  • Jeong Y, Lee K, Kim H. Correlation between microstructure and corrosion behavior of Zr-Nb binary alloy. J Nucl Mater. 2002;302(1):9–19.
  • Motta AT, Yilmazbayhan A, Comstock RJ, et al. Microstructure and growth mechanism of oxide layers formed on Zr alloys studied with micro-Beam synchrotron radiation. J ASTM Int. 2005;2(5):205–232.
  • Broy Y, Garzarolli F, Seibold A, et al. Influence of transition elements Fe, Cr, and V on long-time corrosion in PWRs. In: Zirconium in the Nuclear Industry: 12th Int’l Symposium, ASTM STP 1354; West Conshohocken, PA; 2000.
  • Adamson R, Cox B, Rudling P, et al. The annual review of zirconium alloy technology for 2000. Molnlycke, Sweden: ANT International; 2000. (ZIRAT5/IZNA1 Annual Report).
  • Barberis P, Ahlberg E, Simic N, et al. Role of the second-phase particles in zirconium binary alloys. In: Zirconium in the Nuclear Industry: 13th Int’l Symposium; West Conshohocken, PA; 2002.
  • Huang K, Logé R. A review of dynamic recrystallization phenomena in metallic materials. Mater Des. 2016;111:548–574.
  • Kass S. The development of the zircaloys. In: Symposium on Corrosion of Zirconium Alloys; West Conshohocken, PA; 1964.
  • Cox B. Mechanisms of zirconium alloy corrosion in nuclear reactors. J Corros Sci Eng. 2003;6:14.
  • Bojinov M, Karastoyanov V, Kinnunen P, et al. Influence of water chemistry on the corrosion mechanism of a zirconium–niobium alloy in simulated light water reactor coolant conditions. Corros Sci. 2010;52(1):54–67.
  • Cheng B, Krüger RM, Adamson RB. Corrosion behaviour of irradiated zircaloy. Proceedings of the 10. international symposium on zirconium in the nuclear industry. 21-24 Jun. Baltimore, MD (United States).1993.
  • Cheng B, Adamson R. Mechanistic studies of zircaloy nodular corrosion. In: Zirconium in the Nuclear Industry: 7th Int’l Symposium; Philadelphia; 1987.
  • Brossmann U, Würschum R, Södervall U, et al. Oxygen diffusion in ultrafine grained monoclinic ZrO2. J App Phys. 1999;85(11):7646.
  • Gong W, Zhang H, Wu C, et al. The role of alloying elements in the initiation of nanoscale porosity in oxide films formed on zirconium alloys. Corros Sci. 2013;77:391–396.
  • Garzarolli F, Seidel H, Tricot R, et al. Oxide growth mechanism on zirconium alloys. ASTM Spec Tech. 1991;1132:395–415.
  • Garner A, Hu J, Harte A, et al. The effect of Sn concentration on oxide texture and microstructure formation in zirconium alloys. Acta Mater. 2015;99:259–272.
  • Anghel C, Hultquist G, Limbäck M. Influence of Pt, Fe/Ni/Cr-containing intermetallics and deuterium on the oxidation of Zr-based materials. J Nucl Mater. 2005;340(2–3):271–283.
  • Oskarsson M. Study on the mechanisms for corrosion and hydriding of zircaloy [Doctoral Thesis]. Stockholm (Sweden): Royal Institute of Technology, Division of Mechanical Metallurgy, Department of Materials Science and Engineering; 2000.
  • Goossens A, Vazquez M, Macdonald D. The nature of electronic states in anodic zirconium oxide films part 1: the potential distribution. Electrochim Acta. 1996;41(1):35–45.
  • Damaskin B, Petrii O, Tsirlina G. Electrochemistry. Moscow: Khimiya; 2001. p. 624.
  • Roberge P. Corrosion engineering. New York: McGraw-Hill Education; 2008.
  • Sharma SK, ed. Green corrosion chemistry and engineering: opportunities and challenges. Weinheim (Germany): Wiley-VCH Verlag GmbH & Co. KGaA; 2012.
  • Sato N. Basics of corrosion chemistry. In: Sharma SK, editor. Green corrosion chemistry and engineering: opportunities and challenges. Weinheim (Germany): Wiley‐VCH Verlag GmbH & Co. KGaA; 2011. p. 1–32.
  • Chen X, Bai X, Deng P, et al. Potential-pH diagram of Zr-H2O system at the increased temperatures. Rare Metal Mat Eng. 2004;33(7):710–713.
  • Mamun A, Schennac R, Parga J, et al. Passive film breakdown during anodic oxidation of zirconium in pH 8 buffer containing chloride and sulfate. Electrochim Acta. 2001;46(22):3343–3350.
  • Abdel Rahim M, Abdel Rahman A, Khalil M. Anion incorporation and its effect on the dielectric constant and growth rate of zirconium oxides. J Appl Electrochem. 1996;26(10):1037–1043.
  • Bojinov M, Fabricius G, Laitinen T, et al. Transpassivity mechanism of iron-chromium-molybdenum alloys studied by AC impedance, DC resistance and RRDE measurements. Electrochim Acta. 1999;44(24):4331–4343.
  • Betova I, Bojinov M, Laitinen T, et al. The transpassive dissolution mechanism of highly alloyed stainless steels II. Effect of pH and solution anion on the kinetics. Corros Sci. 2002;44(12):2699–2723.
  • Song G. Transpassivation of Fe-Cr-Ni stainless steels. Corros Sci. 2005;47(8):1953–1987.
  • Fattah-Alhosseini A, Saatchi A, Golozar M, et al. The transpassive dissolution mechanism of 316L stainless steel. Electrochim Acta. 2009;54(13):3645–3650.
  • Ramasubramanian N. Shadow corrosion. J Nucl Mater. 2004;328(2–3):249–252.
  • Mahmood S, Cantonwine P, Lin Y, et al. Shadow corrosion-induced bow of zircaloy-2 channels. In: XVI-th Intern. Symposium on Zirconium in the Nuclear Industry; Chengdu, China; 2010.
  • Chatelain A, Andersson B, Ballinger RG, et al. Enhanced corrosion of zirconium-base alloys in proximity to other metals: the ‘shadow’ effect. In: ANS Int. Topical Meeting on LWR Fuel Performance; Park City, Utah, USA; 2000.
  • Melehovets A, Pyshin I. Galvanic corrosion of zirconium alloys in water coolant. Izvestiya vuzov Yadernaya Energetika. 2020;2(2):52–63.
  • Lister D, Uchida S. Determining water chemistry: 50th anniversary invited review. J Nucl Sci Technol. 2015;52(4):451–466.
  • Cox B, Wu C. Dissolution of zirconium oxide film in 300°C LiOH. J Nucl Mater. 1993;199(3):272–284.
  • Kim T, Choi KJ, Yoo SC, et al. Influence of dissolved hydrogen on the early stage corrosion behavior of zirconium alloys in simulated light water reactor coolant conditions. Corros Sci. 2018;131:235–244.
  • Pêcheur D, Godlewski J, Peybernès J, et al. Contribution to the understanding of the effect of the water chemistry on the oxidation kinetics of zircaloy-4 cladding. In: Zirconium in the nuclear industry: 12th Int’l Symposium; West Conshohocken, PA; 2000.
  • E. P. R. Institute. Pressurized water reactor primary water chemistry guidelines: revision 6. Palo Alto (CA): EPRI; 2007.
  • I. A. E. Agency. High temperature on-line monitoring of waterchemistry and corrosion control in water cooled powerreactors. Vienna; 2002. (IAEA TECDOC-1303).
  • Duriez C, Drouan D, Pouzadoux G. Reaction in air and in nitrogen of pre-oxidised Zircaloy-4 and M5™ claddings. J Nucl Mater. 2013;441(1–3):84–95.
  • Coolant technology of water cooled reactors.Volume 1: Chemistry of primary coolantin water cooled reactors. Vienna, Austria: Int Atomic Energy Agency. 1992. IAEA -TECDOC-667.
  • Mesmer RE, Baes CF, Sweeton FH. Acidity measurements at elevated temperatures. VI. Boric acid equilibriums. Inorg Chem. 1972;11(3):537–543.
  • Macdonald DD, Urquidi-Macdonald M, Mahaffy JH, et al. Electrochemistry of water-cooled nuclear, Final technical progress report. University Park (PA): Pennsylvania State University; 2006.
  • Liu W, Zhou B, Li Q, et al. Detrimental role of LiOH on the oxide film formed on Zircaloy-4. Corros Sci. 2005;47(7):1855–1860.
  • Une K, Sakamoto K, Aomi M, et al. Hydrogen absorption mechanism of zirconium alloys based on characterization of oxide layer. In: Zirconium in the nuclear industry: 16th Int’l Symposium; Chengdu, China; 2010.
  • Pêcheur D, Godlewski J, Billot P, et al. Microstructure of oxide films formed during the waterside corrosion of the zircaloy-4 cladding in lithiated environment. In: Zirconium in the nuclear industry: 11th Int’l Symposium; West Conshohocken, PA; 1996.
  • Une K, Sakamoto K, Aomi M, et al. Hydrogen absorption mechanism of zirconium alloys based on characterization of oxide layer. J ASTM Int. 2011;8(5):1–21.
  • Betova I, Bojinov M, Saario T. Start-up and shut-down water chemistries in pressurized water reactors. Espoo, Finland; 2012. (VTT Research Report, No VTT-R-00699-12).
  • Steinbrück M, Schaffer S. High-temperature oxidation of zircaloy-4 in oxygen–nitrogen mixtures. Oxid Met. 2016;85(3–4):245–262.
  • Bojinov M, Cai W, Kinnunen P, et al. Kinetic parameters of the oxidation of zirconium alloys in simulated WWER water – effect of KOH content. J Nucl Mater. 2008;378(1):45–54.
  • E. P. R. Institute. Materials reliability program: effect of zinc addition on mitigation of primary water stress corrosion cracking of alloy 600 (MRP-78). Palo Alto (CA): EPRI; 2002.
  • Betova I, Bojinov M, Kinnunen P, et al. Zn injection in pressurized water reactors – laboratory tests, field experience and modelling. Finland; 2011. (Research Report No. VTT-R-05511-11).
  • Nordmann F, Odar S, Venz H, et al. ANT International chemistry update and best practices. Paper 9.02. In: Nuclear Plant Chemistry Conference, NPC 2010; Quebec, Canada; 2010.
  • Byers A. Zinc and CRUD, how they interact. In: EPRI Fuel Reliability Program WG1 Meeting; Las Vegas, USA; 2005.
  • Elliot A. Rate constants and g-values for the simulation of the radiolysis of light water over the range 0-300 deg C. 1994 Oct. (AECL Report No. 11073).
  • Rishel D, Eklund K, Kammenzind B. In-situ EIS measurements of irradiated zircaloy-4 post-transition kinetic behavior. In: Zirconium in the nuclear industry: Proc. of the 15th Int’l Symposium; Sunriver Oregon, USA; 2007.
  • Ai J, Chen Y, Urquidi-Macdonald M, et al. Electrochemical impedance spectroscopic study of passive zirconium, I. High-temperature, deaerated aqueous solutions. J Electrochem Soc. 2007;154(1):C43–C51.
  • Ai J, Chen Y, Urquidi-Macdonald M, et al. Electrochemical impedance spectroscopic study of passive zirconium, II. High-temperature, hydrogenated aqueous solutions. J Electrochem Soc. 2008;154(1):C52–C59.
  • Nishino Y, Endo M, Ibe E, et al. Formation and dissolution of oxide film on zirconium alloys in 288°C pure water under γ-ray irradiation. J Nucl Mater. 1997;248:292–298.
  • Christensen H. Remodeling of the oxidant species during radiolysis of high-temperature water in a pressurized water reactor. Nucl Tech. 1995;109(3):373–382.
  • Bertuch A, Pang J, Macdonald D. The argument for low hydrogen and lithium operation in PWR primary circuits. In: 7th international symposium on environmental degradation of materials in nuclear power systems: Water reactors; Breckenridge, CO; 1995.
  • Macdonald DD, Urquidi-Macdonald M. Theory of steady-state passive films. J Electrochem Soc. 1990;137(8):2395–2402.
  • Mirza NM, Rafique M, J HM, et al. Computer simulation of corrosion product activity in primary coolants of a typical PWR under flow rate transients and linearly accelerating corrosion. Ann Nucl Energy. 2003;30(7):831–851.
  • Duro L, Grivé M, Cera E, et al. Update of a thermodynamic database for radionuclides to assist solubility limits calculation for PA. Stockholm (Sweden): Svensk Kärnbränslehantering AB, Swedish Nuclear Fuel and Waste Management Co; 2005.
  • Shikina N, Medvedkina O, Popova E, et al. Experimental study of the ZrO2 solubility in water solutions of perchloric acid at 150°С. Vestn Otd nauk Zemle. 2011;3(NZ6099):1–7.
  • Curti E, Degueldre C. Solubility and hydrolysis of Zr oxides: a review and supplemental data. Radiochim Acta. 2002;90(9–11):801–804.
  • Kritskiy A. Solubility of zirconium and chromium corrosion products in aqueous solutions at 298-623 K, St. Petersburg, Russian Federation [Ph.D. Thesis]. St. Petersburg Technological Institute; 1992.
  • Wei J, Frankel P, Blat M, et al. Autoclave study of zirconium alloys with and without hydride rim. Corros Eng Sci Technol. 2012;47(7):516–528.
  • De Menibus A, Guilbert T, Auzoux Q, et al. Hydrogen contribution to the thermal expansion of hydrided Zircaloy-4 cladding tubes. J Nucl Mater. 2013;440(1–3):169–177.
  • Pêcheur D, Lefebvre F, Motta A, et al. Oxidation of intermetallic precipitates in Zircaloy-4: impact of irradiation. In: Zirconium in the nuclear industry: 10th Int’l Symposium; Philadelphia, PA; 1994.
  • Agency IAE. Review of fuel failures in water cooled reactors. In: Nucl. Energy Ser. NF-T-2.1. Vienna, Austria; 2010.
  • Cox B, Y.-m W. Hydrogen uptake micro-mechanism for Zr alloys. J Nucl Mater. 1999;270(1–2):134–146.
  • Blat M, Legras L, Noel D, et al. Contribution to a better understanding of the detrimental role of hydrogen on the corrosion rate of Zircaloy-4 cladding materials, in: zirconium in the Nuclear Industry: STP 1. Proceedings of the 12th International Symposium, ASTM STP 1354; 1998; Toronto, Canada; West Conshohocken, Pa., USA: ASTM International.
  • Ensor B, Lucente A, Frederick M, et al. The role of hydrogen in zirconium alloy corrosion. J Nucl Mater. 2017;496:301–312.
  • Courty O, Motta AT, Hales J. Modeling and simulation of hydrogen behavior in Zircaloy-4 fuel cladding. J Nucl Mater. 2014;452(1–3):311–320.
  • Une K, Ishimoto S. Dissolution and precipitation behavior of hydrides in Zircaloy-2 and high Fe Zircaloy. J Nucl Mater. 2003;322(1):66–72.
  • Bertolino G, Meyer G, Perez IJ. In situ crack growth observation and fracture toughness measurement of hydrogen charged Zircaloy-4. J Nucl Mater. 2003;322(1):57–65.
  • Zielinski A, Sobieszczyk S. Hydrogen-enhanced degradation and oxide effects in zirconium alloys for nuclear applications. Int J Hydrogen Energy. 2011;36(14):8619–8629.
  • Dauma R, Chu Y, Motta A. Identification and quantification of hydride phases in Zircaloy-4 cladding using synchrotron X-ray diffraction. J Nucl Mater. 2009;392(3):453–463.
  • Wang X, Zheng M-J, Szlufarska I, et al. Continuum model for hydrogen pickup in zirconium alloys of LWR fuel cladding. Int J Appl Phys. 2017;121(13):135101.
  • Couet A, Motta A, Comstock R. Hydrogen pickup measurements in zirconium alloys: relation to oxidation kinetics. J Nucl Mater. 2014;451(1–3):1–13.
  • Harada M, Wakamatsu R. The effect of hydrogen on the transition behavior of the corrosion rate of zirconium alloys. In: Zirconium in the Nuclear Industry: 15th Int’l Symposium; West Conshohocken, PA; 2008.
  • Romero J, Partezana J, Comstock R, et al. Evolution of hydrogen pickup fraction with oxidation rate on zirconium alloys. Top Fuel Reactor Fuel Performance, Zurich, Switzerland. 2015;476–482.
  • Platt P, Polatidis E, Frankel P, et al. A study into stress relaxation in oxides formed on zirconium alloys. J Nucl Mater. 2015;456:415–425.
  • Wang X, Khafizov M, Szlufarska I. Effect of surface strain on oxygen adsorption on Zr (0 0 0 1) surface. Int J Appl Phys. 2014;445(1–3):1–6.
  • Kim Y, Jeong Y, Son S. A study on the effects of dissolved hydrogen on zirconium alloys corrosion. J Nucl Mater. 2014;444(1–3):349–355.
  • Yan C, Wang R, Wang Y, et al. Effects of ion irradiation on microstructure and properties of zirconium alloys—A review. Nucl Eng Technol. 2015;47(3):323–331.
  • Motta AT, Lemaignan C, Olander DR. Segregation of tin in zircaloy-2 under proton irradiation. In: 15th Int’l Symposium on the Effects of Irradiation on Materials; Nashville, TN; 1992.
  • Garzarolli F, Goll W, Seibold A, et al. Effect of in-PWR irradiation on size, structure, and composition of intermetallic precipitates of Zr alloys Zircon. Proceedings of Eleventh international symposium: Zirconium in the nuclear industry. American Society for Testing and Materials.(1996)
  • Pêcheur D, Lefebvre F, Motta AT, et al. Effect of irradiation on the precipitate stability in Zr alloys. J Nucl Mater. 1993;205:445–451.
  • Adamson RB, Rudling P. Properties of zirconium alloys and their applications in light water reactors (LWRs). In: K.L. Murty,editor. Materials ageing and degradation in light water reactors. Cambridge (UK): Woodhead Publishing; 2013. p. 151–245.
  • Garzarolli F, Schumann R, Steinberg E. Corrosion optimized zircaloy forBoiling Water Reactor (BWR) fuel elements. In: Tenth Int’l Symposium, Zirconium in the Nuclear Industry, ASTM STP 1245; Philadelphia; 1994.
  • Griffiths M, Gilbert RW, Cheadle BA. Formation, growth and decomposition of precipitates in zircaloy-2 and −4, AECL-8852. Atomic Energy of Canada, Chalk River Nuclear Labs: Chalk River, Ontario; 1985.
  • Etoh Y, Shimada SJ. Neutron irradiation effects on intermetallic precipitates in Zircaloy as a function of fluence. J Nucl Mater. 1993;200(1):59–69.
  • Markelov V, Novikov V, Shevyakov A, et al. Preliminary irradiation effect on corrosion resistance of zirconium alloys.In: Zirconium in the Nuclear Industry: 18th Int’l Symposium; West Conshohocken, PA; 2018.
  • Filippov V, Bateev A, Lauer Y, et al. The influence of reactor irradiation on the oxidation state of tin in Zr-0.76Fe-1.6Sn. Hyperfine Interact. 2018;239(1):21.
  • Yang S, Guo Z, Zhao L. Surface microstructures and high-temperature high-pressure corrosion behavior of N18 zirconium alloy induced by high current pulsed electron beam irradiation. Appl Surf Sci. 2019;484:453–460.