790
Views
2
CrossRef citations to date
0
Altmetric
Article

JENDL photonuclear data file 2016

, &
Pages 911-922 | Received 24 Jun 2022, Accepted 18 Nov 2022, Published online: 22 Jan 2023

References

  • Sherman NK, Gellie RW, Lokan KH, et al. De-excitation neutrons following 14N Photodisintegration. Phys. Rev. Lett. 1970 Jul;25:114–116.
  • Fultz SC, Bramblett RL, Caldwell JT, et al. Photoneutron cross-section measurements on gold using nearly monochromatic photons. Phys. Rev. 1962 Aug;127:1273–1279.
  • Utsunomiya H, Makinaga A, Goko S, et al. Photoneutron cross section measurements on the N = 82 nuclei 139La and 141Pr: implications for p-process nucleosynthesis. Phys. Rev. C. 2006 Aug;74:025806.
  • Dietrich SS, Berman BL. Atlas of photoneutron cross sections obtained with monoenergetic photons. At. Data Nucl. Data Tables. 1988;38(2):199–338.
  • Masuda K, Kii T, Ohgaki H, et al. Shielding analysis for a 40-MeV electron linac facility. Nucl. Technol. 2009;168(2):467–471.
  • Almen A, Ahlgren L, Mattsson S. Absorbed dose to technicians due to induced activity in linear accelerators for radiation therapy. Phys. Med. Biol. 1991 Jun;36(6):815–822.
  • Fischer HW, Tabot BE, Poppe B. Activation processes in a medical linear accelerator and spatial distribution of activation products. Phys. Med. Biol. 2006 Nov;51(24):N461–N466.
  • Strachan JD, Meservey EB, Stodiek W, et al. Photo-neutron production in the PLT tokamak. Nucl. Fusion. 1977 Feb;17(1):140–144.
  • Hendel HW, Jassby DL. The TOKAMAK as a Neutron Source. Princeton Plasma Phys. Lab. 1989. PPPL-2656.
  • Breizman BN, Aleynikov P, Hollmann EM, et al. Physics of runaway electrons in tokamaks. Nucl. Fusion. 2019 Jun;59(8):083001.
  • Sun XY, Luo W, Lan HY, et al. Transmutation of long-lived fission products in an advanced nuclear energy system. Sci. Rep. 2022;12:2240.
  • D’Errico F, Luszik-Bhadra M, Nath R, et al. Depth dose-equivalent and effective energies of photoneutrons generated by 6–18 MV X-ray beams for radiotherapy. Health Phys. 2001;80(1):4–11.
  • Fujibuchi T, Obara S, Sato H, et al. Estimate of photonuclear reaction in a medical linear accelerator using a water-equivalent phantom. Prog. Nucl. Sci. Technol. 2011;2:803–807.
  • Kimura R, Sagara H, Chiba S. Precision requirement of the photofission cross section for the nondestructive assay. Vol. 146, EPJ Web of Conferences, Bruges, Belgium: 2017. p. 09041.
  • Chin KW, Sagara H, Han CY. Application of photofission reaction to identify high-enriched uranium by bremsstrahlung photons. Ann. Nucl. Energy. 2021;158:108295.
  • Bobeica M, Niculae D, Balabanski D, et al. Radioisotope production for medical applications at ELI-NP. Rom. Rep. Phys. 2016;68 Supplement:S847–S883.
  • Sari A, Carrel F, Jouanne C, et al. Optimization of the photoneutron flux emitted by an electron accelerator for neutron interrogation applications using MCNPX and TRIPOLI-4 Monte Carlo Codes. In: Proceedings of the 4th International Particle Accelerator Conference (IPAC 2013): Shanghai, China, May 12-17, 2013; 2013. p. 3630–3632.
  • Rauscher T, Thielemann FK. Predicted cross-sections for photon-induced particle emission. At. Data Nucl. Data Tables. 2004;88(1):1–81.
  • Hayakawa T, Iwamoto N, Kajino T, et al. Empirical abundance scaling laws and implications for the gamma process in core-collapse supernovae. Astrophys J. 2008 Oct;685(2):1089–1102.
  • IAEA. Handbook on photonuclear data for applications: cross sections and spectra. Vienna, Austria: IAEA; 2000. IAEA-TECDOC-1178.
  • Obložinský P. Photonuclear Data. J. Nucl. Sci. Technol. Suppl. 2002;2:31–36.
  • Chadwick MB. Neutron, proton, and photonuclear cross sections for radiation therapy and radiation protection: Los Alamos, NM: Los Alamos National Laboratory; 1998. LA-UR-98-4139.
  • Han Y. KAERI photonuclear data library. Daejeon: KAERI; 2000. KAERI/TR-1512/2000.
  • Kishida N, Murata T, Asami T, et al. JENDL Photonuclear Data File. AIP Conf. Proc. 2005;769(1):199–202.
  • Koning AJ, Rochman D, Sublet JC, et al. TENDL: complete nuclear data library for innovative nuclear science and technology. Nucl. Data Sheets. 2019;155: 1–55.
  • Brown DA, Chadwick MB, Capote R, et al. ENDF/B-VIII.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nucl. Data. Sheets. 2018;148:1–142.
  • Kawano T, Cho YS, Dimitriou P, et al. IAEA Photonuclear data library 2019. Nucl. Data Sheets. 2020;163:109–162.
  • Iwamoto N, Kosako K, Murata T Photonuclear Data File. In: Proceedings of the 2015 Symposium on Nuclear Data; November 19-20, 2015, Ibaraki Quantum Beam Research Center, Tokai-mura, Ibaraki, Japan; 2016. p. 53–58. JAEA-Conf 2016-004.
  • Member of the Cross Sections Evaluation Working Group. ENDF-6 Formats manual, data formats and procedures for the evaluated nuclear data files ENDF/B-VI, ENDF/B-VII and ENDF/B-VIII. Brookhaven National Laboratory; 2018. BNL-203218- 2018-INRE.
  • Iwamoto O, Iwamoto N, Kunieda S, et al. The CCONE Code system and its application to nuclear data evaluation for fission and other reactions. Nucl. Data Sheets. 2016;131:259–288.
  • Fukahori T ALICE-F Calculation of nuclear data up to 1 GeV. In: Proceedings of the Specialists Meeting on High Energy Nuclear Data; October 3-4, 1991, JAERI, Tokai; 1992. p. 114–122. JAERI-M 92-039.
  • Murata T, Kosako K, Fukahori T Renewal of JENDL photonuclear data file 2004 (I) Elements of atomic number below 20. In: Proceedings of the 2010 Symposium on Nuclear Data; November 25-26, 2010, C-CUBE, Chikushi Campus, Kyushu University, Kasuga, Japan; 2011. p. 235–240. JAEA-Conf 2011-002.
  • Levinger JS. The high energy nuclear photoeffect. Phys. Rev. 1951 Oct;84:43–51.
  • Chadwick MB, Obložinský P, Hodgson PE, et al. Pauli-blocking in the quasideuteron model of photoabsorption. Phys. Rev. C. 1991;44:814–823.
  • Fuller EG, Hayward E. The Giant resonance of the nuclear photoeffect. In: Endt PM, and PB Smith, editors. Nuclear Reactions Volume II. Chapter III. Amsterdam: North- Holland; 1962. pp. 113–194.
  • IAEA. Evaluated Nuclear Structure Data File; 2010. Available from: https://www.nndc.bnl.gov/ensdf/.
  • IAEA. Handbook for calculations of nuclear reaction data, RIPL-2. Vienna, Austria: IAEA; 2006. IAEA- TECDOC-1506.
  • de Shalit A, Feshbach H. Theoretical nuclear physics, Volume 1, Nuclear structure. New York: Wiley; 1974.
  • Capote R, Herman M, Obložinský P, et al. RIPL - Reference input parameter library for calculation of nuclear reactions and nuclear data evaluations. Nucl. Data Sheets. 2009;110(12):3107–3214.
  • Gilbert A, Cameron AGW. A composite nuclear-level density formula with shell corrections. Can. J. Phys. 1965;43(8):1446–1496.
  • Mengoni A, Nakajima Y. Fermi-gas model parametrization of nuclear level density. J. Nucl. Sci. Technol. 1994;31(2):151–162.
  • Koning AJ, Delaroche JP. Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A. 2003;713(3):231–310.
  • Han Y, Shi Y, Shen Q. Deuteron global optical model potential for energies up to 200 MeV. Phys. Rev. C. 2006;74:044615.
  • Xu Y, Guo H, Han Y, et al. Helium-3 global optical model potential with energies below 250 MeV. Sci. China: Phys. Mech. Astronomy. 2011;54(11):2005.
  • Avrigeanu M, Avrigeanu V. α-particle nuclear surface absorption below the Coulomb barrier in heavy nuclei. Phys. Rev. C. 2010;82:014606.
  • Plujko VA, Ezhov SN, Kavatsyuk MO, et al. Testing and improvements of gamma-ray strength functions for nuclear model calculations. J. Nucl. Sci. Technol. 2002;39(sup2):811–814.
  • Kopecky J, Uhl M. Test of gamma-ray strength functions in nuclear reaction model calculations. Phys. Rev. C. 1990;41:1941–1955.
  • Kalbach C. Two-component exciton model: basic formalism away from shell closures. Phys. Rev. C. 1986;33:818–833.
  • Koning AJ, Duijvestijn MC. A global pre-equilibrium analysis from 7 to 200 MeV based on the optical model potential. Nucl. Phys. A. 2004;744:15.
  • Shibata K, Iwamoto O, Nakagawa T, et al. JENDL-4.0: a New library for nuclear science and engineering. J. Nucl. Sci. Technol. 2011;48(1):1–30.
  • Caldwell JT, Dowdy EJ, Alvarez RA, et al. Experimental Determination of photofission neutron multiplicities for 235U, 236U, 238U, and 232Th using monoenergetic photons. Nucl. Sci. Eng. 1980;73(2):153–163.
  • Berman BL, Caldwell JT, Dowdy EJ, et al. Photofission and photoneutron cross sections and photofission neutron multiplicities for 233U, 234U, 237Np, and 239Pu. Phys. Rev. C. 1986 Dec;34:2201–2214.
  • Wahl AC. Systematics of Fission-Product Yields. Los Alamos, NM: Los Alamos National Laboratory; 2002. LA-13928.
  • Ethvignot T, Devlin M, Duarte H, et al. Neutron multiplicity in the fission of 238U and 235U with neutrons up to 200 MeV. Phys. Rev. Lett. 2005 Feb;94:052701.
  • Weisskopf VF, Ewing DH. On the yield of nuclear reactions with heavy elements. Phys. Rev. 1940 Mar;57:472–485.
  • Kalbach C. Systematics of continuum angular distributions: extensions to higher energies. Phys. Rev. C. 1988 Jun;37:2350–2370.
  • Wapstra AH, Audi G. The 1983 atomic mass evaluation (I). Atomic mass table. Nucl. Phys. A. 1985;432:1–54.
  • Fukahori T. Historical overview of nuclear data evaluation in the intermediate energy region. AIP Conf. Proc. 2005;769(1):47–52.
  • Otuka N, Dupont E, Semkova V, et al. Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): International collaboration between Nuclear Reaction Data Centres (NRDC). Nucl. Data Sheets. 2014;120:272–276.
  • Berman BL, Pywell RE, Dietrich SS, et al. Absolute photoneutron cross sections for Zr, I, Pr, Au, and Pb. Phys. Rev. C. 1987 Oct;36:1286–1292.
  • Carlos P, Beil H, Bergère R, et al. A study of the photoneutron contribution to the giant dipole resonance of nuclei in the 64 ≤ A ≤ 86 mass region. Nucl. Phys. A. 1976;258(2):365–387.
  • Lepretre A, Beil H, Bergere R, et al. The giant dipole states in the A = 90 mass region. Nucl. Phys. A. 1971;175(3):609–628.
  • Berman BL, Bramblett RL, Caldwell JT, et al. Photoneutron Cross Sections for As75, Ag107, and Cs133. Phys. Rev. 1969 Jan;177:1745–1754.
  • Leprêtre A, Beil H, Bergère R, et al. A study of the giant dipole resonance of vibrational nuclei in the 103 ≤ A ≤ 133 mass region. Nucl. Phys. A. 1974;219(1):39–60.
  • Bergère R, Beil H, Carlos P, et al. Sections efficaces photoneutroniques de I, Ce, Sm, Er et Lu. Nucl. Phys. A. 1969;133(2):417–437.
  • Bramblett RL, Caldwell JT, Berman BL, et al. Photoneutron Cross Sections of Pr141 and I127 from Threshold to 33 MeV. Phys. Rev. 1966 Aug;148:1198–1205.
  • Carlos P, Beil H, Bergère R, et al. The giant dipole resonance in the transition region of the samarium isotopes. Nucl. Phys. A. 1974;225(1):171–188.
  • Bramblett RL, Caldwell JT, Harvey RR, et al. Photoneutron Cross Sections of Tb159 and O16. Phys. Rev. 1964 Feb;133:B869–B873.
  • Bramblett RL, Caldwell JT, Auchampaugh GF, et al. Photoneutron Cross Sections of Ta181 and Ho165. Phys. Rev. 1963 Mar;129:2723–2729.
  • Veyssiere A, Beil H, Bergere R, et al. Photoneutron cross sections of 208Pb and 197Au. Nucl. Phys. A. 1970;159(2):561–576.
  • Harvey RR, Caldwell JT, Bramblett RL, et al. Photoneutron Cross Sections of Pb206, Pb207, Pb208, and Bi209. Phys. Rev. 1964 Oct;136:B126–B131.
  • Veyssière A, Beil H, Bergère R, et al. A study of the photofission and photoneutron processes in the giant dipole resonance of 232Th, 238U and 237Np. Nucl. Phys. A. 1973;199(1):45–64.
  • Goryachev BI, Ishkhanov BS, Shevchenko VG, et al. Structure of (γ,n) Cross Sections in Si28, S32, and Ca40. Yadernaya Fizika. 1968;7:1168.
  • Webb DV, Muirhead EG, Spicer BM. The photoneutron cross sections of 28Si and 24Mg. Nucl. Phys. A. 1970;159(1):81–96.
  • Pywell RE, Berman BL, Jury JW, et al. Photoneutron cross sections for the silicon isotopes. Phys. Rev. C. 1983 Mar;27:960–975.
  • Caldwell JT, Harvey RR, Bramblett RL, et al. (γ,n) cross sections for O16 and Si28. Phys. Letters. 1963;6(2):213–215.
  • Kosako K, Murata T, Iwamoto N Status of New JENDL Photonuclear Data File. In: Hayakawa T, M Senzaki, and P Bolton et al., editors Proceedins of the Internatinal Symposium Nuclear Physics and Gamma-Ray Sources for Nuclear Security and Nonproliferation Tokai-mura, Japan. World Scientific; 2015. p. 261–268.
  • Costa S, Ferroni F, Ferroni S, et al. Photoneutrons from medium elements up to 80 MeV photon energy. Phys. Letters. 1964;11(4):324–326.
  • Ishkhanov BS, Kapitonov IM, Lazutin EV, et al. Photoneutron reaction cross section of 55Mn in the giant dipole resonance region. Bull. Russ. Acad. Sci. Phys. 1971;34:1988–1991.
  • Alvarez RA, Berman BL, Faul DD, et al. Photoneutron cross sections for 55Mn and 59Co. Phys. Rev. C. 1979 Jul;20:128–138.
  • Kosako K, Oishi K, Nakamura T, et al. Angular distribution of photoneutrons from copper and tungsten targets bombarded by 18, 28, and 38 MeV electrons. J. Nucl. Sci. Technol. 2011;48(2):227–236.
  • Kosako K, Nakamura T. Comparison of photonuclear data files used in shielding calculation of a medical linac room. Nihon Genshiryoku Gakkai wabun rombunshi. 2021;20(1):23–33.
  • X-5 Monte Carlo Team. MCNP-A General Monte Carlo N-particle Transport Code, Version 5. Los Alamos, NM: Los Alamos National Laboratory; 2003.
  • Fultz SC, Bramblett RL, Caldwell JT, et al. Photoneutron cross sections for natural Cu, Cu63, and Cu65. Phys. Rev. 1964 Mar;133:B1149–B1154.
  • Antonov AD, Balabanov NP, Gangrsky YP, et al. Studies of photonuclear reactions with emission of alpha particles in the region of the giant dipole resonance. Yadernaya Fizika. 1990;51:305.
  • Katz L, Cameron AGW. The Solution of X-ray activation curves for photonuclear cross sections. Can. J. Phys. 1951;29(6):518–544.
  • Veyssière A, Beil H, Bergère R, et al. Étude de la résonance géante dipolaire dans la région de transition autour de A = 190. J. Phys. Lett. 1975;36(11):267–270.
  • Vogt K, Mohr P, Babilon M, et al. Measurement of the (γ,n) cross section of the nucleus 197Au close above the reaction threshold. Nucl. Phys. A. 2002;707(1):241–252.
  • Hara KY, Harada H, Kitatani F, et al. Measurements of the 152Sm(γ,n) cross section with laser-Compton scattering γ rays and the photon difference method. J. Nucl. Sci. Technol. 2007;44(7):938–945.
  • Kitatani F, Harada H, Goko S, et al. Measurement of the 80Se(γ,n) cross section using laser-Compton scattering γ-rays. J. Nucl. Sci. Technol. 2010;47(4):367–375.
  • Kitatani F, Harada H, Goko S, et al. Measurement of 76Se and 78Se(γ,n) cross sections. J. Nucl. Sci. Technol. 2011;48(7):1017–1024.
  • Itoh O, Utsunomiya H, Akimune H, et al. Photoneutron cross sections for Au revisited: measurements with laser Compton scattering γ-rays and data reduction by a least-squares method. J. Nucl. Sci. Technol. 2011;48(5):834–840.
  • Plaisir C, Hannachi F, Gobet F, et al. Measurement of the 85Rb(γ,n)84mRb cross-section in the energy range 10-19 MeV with bremsstrahlung photons. Eur. Phys. J. A. 2012;48:68.
  • Zatsepina GN, Igonin VV, Lazareva LE, et al. Direct photoeffect on heavy nuclei at small excitation energy. Low and medium energy nuclear reactions, Moscow: 1960. p. 479.
  • Lepestkin AI, Sidorov VI. Nonequilibrium photoneutrons and statistical characteristics of Heavy Nuclei from photonuclear experiments. Izvestiya Rossiiskoi Akademii Nauk, Seriya Fizicheskaya. 1984;48:355.
  • Khan AM, Knowles JW. Photofission of 232Th, 238U and 235U near threshold using a variable energy beam of γ-rays. Nucl. Phys. A. 1972;179(2):333–352.
  • Silano JA, Karwowski HJ. Near-barrier photofission in 232Th and 238U. Phys. Rev. C. 2018 Nov;98:054609.
  • Caldwell JT, Dowdy EJ, Berman BL, et al. Giant resonance for the actinide nuclei: photoneutron and photofission cross sections for 235U, 236U, 238U, and 232Th. Phys. Rev. C. 1980 Apr;21:1215–1231.
  • Ries H, Mank G, Drexler J, et al. Absolute photofission cross sections for 235,238U in the energy range 11.5-30 MeV. Phys. Rev. C. 1984 Jun;29:2346–2348.
  • Ries H, Kneissl U, Mank G, et al. Absolute photofission cross sections of 235,238U measured with tagged photons between 40 and 105 MeV. Phys. Lett. B. 1984;139(4):254–258.
  • Leprêtre A, Bergère R, Bourgeois P, et al. Absolute photofission cross sections for 232Th and 235,238U measured with monochromatic tagged photons (20 MeV<Eγ<110 MeV). Nucl. Phys. A. 1987;472(3):533–557.
  • Martins JB, Moreira EL, Tavares OAP, et al. Absolute photofission cross section of 197Au, natPb, 209Bi, 232Th, 238U, and 235U nuclei by 69-MeV monochromatic and polarized photons. Phys. Rev. C. 1991 Jul;44:354–364.
  • Tavares OAP, Terranova ML, Casano L, et al. Fission of complex nuclei induced by 52-MeV monochromatic and polarized photons. Phys. Rev. C. 1991 Oct;44:1683–1686.
  • Soldatov AS, Smirenkin GN. Yield and cross section for fission of odd nuclei by γ rays with energies up to 11 MeV. Yadernaya Fizika. 1992;55:3153.
  • Frommhold T, Steiper F, Henkel W, et al. Photofission of 235U and 238U at intermediate energies: absolute cross sections and fragment mass distributions. Zeitschrift für Physik A Hadrons Nuclei. 1994;350(3):249–261.
  • Cetina C, Heimberg P, Berman BL, et al. Photofission of heavy nuclei from 0.2 to 3.8 GeV. Phys. Rev. C. 2002 Apr;65:044622.
  • Sanabria JC, Berman BL, Cetina C, et al. Photofission of actinide nuclei in the quasideuteron and lower part of the ∆ energy region. Phys. Rev. C. 2000 Feb;61:034604.