1,122
Views
3
CrossRef citations to date
0
Altmetric
Article

Dependency of the source term estimation method for radionuclides released into the atmosphere on the available environmental monitoring data and its applicability to real-time source term estimation

, , &
Pages 980-1001 | Received 17 Aug 2022, Accepted 14 Dec 2022, Published online: 13 Jan 2023

References

  • Otosaka S, Kamidaira Y, Ikenoue T, et al. Distribution, dynamics, and fate of radiocesium derived from FDNPP accident in the ocean. J. Nucl. Sci. Technol. 2022;59(4):409–423. DOI:10.1080/00223131.2021.1994480
  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). UNSCEAR 2013 Report: sources, Effects and Risks of Ionizing Radiation. Vol. I. New York, USA: United Nations; 2014.
  • Chino M, Nakayama H, Nagai, et al. Preliminary Estimation of Release Amounts of131I and 137Cs Accidentally Discharged from the Fukushima Daiichi Nuclear Power Plant into the Atmosphere. J. Nucl. Sci. Technol. 2011;48(7):1129–1134. DOI:10.1080/18811248.2011.9711799
  • Katata G, Terada H, Nagai H, et al. Numerical reconstruction of high dose rate zones due to the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 2012;111:2–12.
  • Katata G, Ota M, Terada H, et al. Atmospheric discharge and dispersion of radionuclides during the Fukushima Daiichi Nuclear Power Plant accident. Part I: source term estimation and local-scale atmospheric dispersion in early phase of the accident. J. Environ. Radioact. 2012;109:103–113.
  • Terada H, Katata G, Chino M, et al. Atmospheric discharge and dispersion of radionuclides during the Fukushima Daiichi Nuclear Power Plant accident. Part II: verification of the source term and regional-scale atmospheric dispersion. J. Environ. Radioact. 2012;112:141–154.
  • Katata G, Chino M, Kobayashi T, et al. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model. Atmos Chem. Phys. 2015;15(2):1029–1070. DOI:10.5194/acp-15-1029-2015
  • Chino M, Terada H, Nagai, et al. Utilization of 134Cs/137Cs in the environment to identify the reactor units that caused atmospheric releases during the Fukushima Daiichi accident. Sci. Rep. 2016;6(1):31376. DOI:10.1038/srep31376
  • Imai K, Chino M, Ishikawa H, et al. SPEEDI: a computer code system for the real-time prediction of radiation dose to the public due to an accidental release. Japan: Japan Atomic Energy Research Institute; 1985. JAERI 1297.
  • Nagai H, Chino M, Yamazawa H. Development of scheme for predicting atmospheric dispersion of radionuclides during nuclear emergency by using atmospheric dynamic model. J. at Energy Soc. Jpn. 1999;41(7):777–785. Japanese with English abstract. DOI:10.3327/jaesj.41.777
  • Terada H, Nagai H, Furuno A, et al. Development of worldwide version of system for prediction of environmental emergency dose information: wSPEEDI 2nd version. Trans. at Energy Soc. Jpn. 2008;7(3):257–267. ( Japanese with English abstract).
  • Terada H, Nagai H, Tanaka A, et al. Atmospheric dispersion database system that can immediately provide calculation results for various source term and meteorological conditions. J. Nucl. Sci. Technol. 2020;57(6):745–754. DOI:10.1080/00223131.2019.1709994
  • Terada H, Nagai H, Tsuduki K, et al. Refinement of source term and atmospheric dispersion simulations of radionuclides during the Fukushima Daiichi nuclear power station accident. J. Environ. Radioact. 2020;213:106104.
  • Kadowaki M, Furuno A, Nagai H, et al. Validity of the source term for the Fukushima Dai-ichi nuclear power station accident estimated using local-scale atmospheric dispersion simulations to reproduce the large-scale atmospheric dispersion of 137Cs. J. Environ. Radioact. 2021;237:106704.
  • Schöppner M, Plastino W, Povinec P, et al. Estimation of the time-dependent radioactive source-term from the Fukushima nuclear power plant accident using atmospheric transport modelling. J. Environ. Radioact. 2012;114:10–14.
  • Stohl A, Seibert P, Wotawa G, et al. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmos Chem. Phys. 2012;12(5):2313–2343. DOI:10.5194/acp-12-2313-2012
  • Ten Hoeve J, Jacobson M. Worldwide health effects of the Fukushima Daiichi nuclear accident. Energy Environ. Sci. 2012;5(9):8743–8757.
  • Winiarek V, Bocquet M, Saunier O, et al. Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant. J. Geophys. Res. 2012;117(D5):D05122. DOI:10.1029/2011JD016932
  • Hirao S, Yamazawa H, Nagae T. Estimation of release rate of iodine-131 and cesium-137 from the Fukushima Daiichi nuclear power plant. J. Nucl. Sci. Technol. 2013;50(2):139–147.
  • Saunier O, Mathieu A, Didier D, et al. An inverse modeling method to assess the source term of the Fukushima Nuclear Plant accident using gamma dose rate observations. Atmos Chem. Phys. 2013;13(22):11403–11421. DOI:10.5194/acp-13-11403-2013
  • Winiarek V, Bocquet M, Duhanyan N, et al. Estimation of the caesium-137 source term from the Fukushima Daiichi nuclear power plant using a consistent joint assimilation of air concentration and deposition observations. Atmos Environ. 2014;82:268–279.
  • Yumimoto K, Morino Y, Ohara T, et al. Inverse modeling of the 137Cs source term of the Fukushima Dai-ichi Nuclear Power Plant accident constrained by a deposition map monitored by aircraft. J. Environ. Radioact. 2016;164:1–12.
  • Skamarock WC, Klemp JB, Dudhia J, et al. A description of the Advanced Research WRF Version 3. Boulder, Colorado, USA: National Center for Atmospheric Research; 2008. NCAR Tech. Note NCAR/TN-475STR.
  • Barker D, Huang X-Y, Liu Z, et al. The weather research and forecasting model’s community variational/ensemble data assimilation system: wRFDA. Bull Am Meteorol. Soc. 2012;93(6):831–843. DOI:10.1175/BAMS-D-11-00167.1
  • Gifford FA. Horizontal diffusion in the atmosphere: a Lagrangian-dynamic theory. Atmos Environ. 1982;16(3):505–512.
  • Terada H, Nagai H, Yamazawa H. Validation of a Lagrangian atmospheric dispersion model against middle-range scale measurements of 85Kr concentration in Japan. J. Nucl. Sci. Technol. 2013;50(12):1198–1212.
  • Terada H, Chino M. Development of an atmospheric dispersion model for accidental discharge of radionuclides with the function of simultaneous prediction for multiple domains and its evaluation by application to the Chernobyl nuclear accident. J. Nucl. Sci. Technol. 2008;45(9):920–931.
  • Gurney KR, Law RM, Denning AS, et al. TransCom 3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus. B. 2003;55(2):555–579. DOI:10.1034/j.1600-0889.2003.00049.x
  • Enting IG. Inverse problems in atmospheric constituent transport. Cambridge (UK): Cambridge University Press; 2002.
  • Tarantola A. Inverse Problem Theory. Amsterdam (Netherlands): Elsevier; 1987.
  • Hong S-Y, Lim J-OJ. The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteolo. Soc. 2006;42:129–151.
  • Janjic ZI. The step–mountain eta coordinate model: further developments of the convection, viscous sublayer and turbulence closure schemes. Mon. Wea. Rev. 1994;122(5):927–945.
  • Nakanishi M, Niino H. An improved Mellor–Yamada level-3 model with condensation physics: its design and verification. Boundary Layer Meteorol. 2004;112(1):1–31.
  • Mlawer EJ, Taubman SJ, Brown PD, et al. Radiative transfer for inhomogeneous atmosphere, RRTM, a validated correlated-k model for the long wave. J. Geophys. Res. 1997;102:16663–16682.
  • Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos Sci. 1989;46(20):3077–3107.
  • Morrison H, Curry JA, Khvorostyanov VI. A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: description. J. Atoms Sci. 2005;62(6):1665–1677.
  • MEXT: Readings of dust sampling [Internet]. Japan: ministry of education, culture, sport, science and technology; 2011 [cited 2022 Jul 22]. Available from:http://radioactivity.nsr.go.jp/en/contents/4000/3156/24/dust%20sampling_All%20Results%20for%20May%202011.pdf
  • METI: Results of the emergency environmental monitoring around TEPCO’s Fukushima Daiichi Nuclear Power Station and Fukushima Daini Nuclear Power Station [Internet]. Japan: Ministry of Economy, Trade and Industry; 2011 [cited 2022 Jul 22]. Japanese. Available from:http://warp.ndl.go.jp/info:ndljp/pid/6086248/www.meti.go.jp/press/2011/06/20110603019/20110603019.html
  • TEPCO: The results of the nuclide analysis of radioactive materials in the air at the site of Fukushima Daiichi Nuclear Power Station (1st–10th release) [Internet]. Japan: Tokyo Electric Power Company; 2011 [cited 2022 Jul 22]. Available from:https://www.tepco.co.jp/en/press/corp-com/release/index1103-e.html
  • Amano H, Akiyama M, Chunlei B, et al. Radiation measurements in the Chiba Metropolitan Area and radiological aspects of fallout from the Fukushima Dai-ichi Nuclear Power Plants accident. J. Environ. Radioact. 2012;111:42–52.
  • Ohkura T, Oishi T, Taki M, et al. Emergency Monitoring of Environmental Radiation and Atmospheric Radionuclides at Nuclear Science Research Institute, JAEA Following the Accident of Fukushima Daiichi Nuclear Power Plant. Japan: Japan Atomic Energy Agency; 2012. JAEA-Data/Code 2012-010.
  • Furuta S, Sumiya S, Watanabe H, et al. Results of the Environmental Radiation Monitoring Following the Accident at the Fukushima Daiichi Nuclear Power Plant. Japan: Japan Atomic Energy Agency; 2011. JAEA-Review 2011-035 Japanese with English abstract.
  • Yamada J, Seya N, Haba R, et al. Environmental Radiation Monitoring Resulting from the Accident at the Fukushima Daiichi Nuclear Power Plant, Conducted by Oarai Research and Development Center, JAEA - Results of Ambient Gamma-ray Dose Rate, Atmospheric Radioactivity and Meteorological Observation. Japan: Japan Atomic Energy Agency; 2013. JAEA-Data/Code 2013-006 Japanese with English abstract.
  • KEK: Measurement of environmental radiation [Internet]. Japan: inter-university research institute corporation high energy accelerator research organization; 2011 [cited 2022 Jul 22].Japanese. Available from:http://www.kek.jp/ja/Research/ARL/RSC/Radmonitor/
  • Tokyo Metropolitan Government: measurement of nuclear fission products of dust particles in the air in Tokyo (from 15 to 23 March 2011) [Internet]. Japan: Tokyo Metropolitan Government; 2011 [cited 2022 Jul 22]. Japanese. Available from:http://www.sangyo-rodo.metro.tokyo.jp/topics/measurement/past/pdf/keisoku-0323-0315.pdf
  • Oura Y, Ebihara M, Tsuruta H, et al. A database of hourly atmospheric concentrations of radiocesium (134Cs and 137Cs) in suspended particulate matter collected in march 2011 at 99 air pollution monitoring stations in Eastern Japan. J. Nucl. Radiochem. Sci. 2015;15(2):15–26. DOI:10.14494/jnrs.15.2_1
  • Tsuruta H, Oura Y, Ebihara M, et al. Time-series analysis of atmospheric radiocesium at two SPM monitoring sites near the Fukushima Daiichi Nuclear Power Plant just after the Fukushima accident on. Geochem. J. 2018 [March 11, 2011];52(2):103–121. DOI:10.2343/geochemj.2.0520.
  • Terasaka Y, Yamazawa H, Hirouchi J, et al. Air concentration estimation of radionuclides discharged from Fukushima Daiichi Nuclear Power Station using NaI(tl) detector pulse height distribution measured in Ibaraki Prefecture. J. Nucl. Sci. Technol. 2016;53(12):1919–1932. DOI:10.1080/00223131.2016.1193453
  • Moriizumi J, Oku A, Yaguchi N, et al. Spatial distributions of atmospheric concentrations of radionuclides on 15 March 2011 discharged by the Fukushima Dai-Ichi Nuclear Power Plant Accident estimated from NaI(tl) pulse height distributions measured in Ibaraki Prefecture. J. Nucl. Sci. Technol. 2020;57(5):495–513. DOI:10.1080/00223131.2019.1699191
  • CTBTO: Fukushima-related Measurements by the CTBTO [Internet]. Vienna, Austria: comprehensive Nuclear-Test-Ban Treaty Organization Preparatory Commission; 2011 [cited 2022 Jul 22]. Available from:http://www.ctbto.org/press-centre/highlights/2011/fukushima-related-measurements-by-the-ctbto
  • Masson O, Baeza A, Bieringer J, et al. Tracking of airborne radionuclides from the damaged Fukushima Dai-Ichi nuclear reactors by European Networks. Environ. Sci. Technol. 2011;45(18):7670–7677. DOI:10.1021/es2017158
  • Diaz-Leon J, Jaffe DA, Kaspar J, et al. Arrival time and magnitude of airborne fission products from the Fukushima, Japan, reactor incident as measured in Seattle, WA, USA. J. Environ. Radioact. 2011;102(11):1032–1038. DOI:10.1016/j.jenvrad.2011.06.005
  • Hsu S-C, Huh C-A, Chan C-Y, et al. Hemispheric dispersion of radioactive plume laced with fission nuclides from the Fukushima nuclear event. Geophys. Res. Lett. 2012;39(7):L00G22. DOI:10.1029/2011GL049986
  • MEXT: (I) Results of Airborne Monitoring Survey in Hokkaido and (ii) Revision to the Results of Airborne Monitoring Survey over the Eastern Part of Japan with Detailed Consideration of the Influence of Natural Radionuclides [Internet]. Japan: Ministry of Education, Culture, Sport, Science and Technology; 2012 [cited 2022 Jul 22]. Available from:https://radioactivity.nsr.go.jp/en/contents/6000/5188/24/203_e_0727_14.pdf
  • MEXT: Reading of Radioactivity Level in Fallout by Prefecture [Internet]. Japan: Ministry of Education, Culture, Sport, Science and Technology; 2011 [cited 2022 Jul 22]. Available from: https://radioactivity.nsr.go.jp/en/list/280/list-1.html
  • Taki M, Kobayashi H, Suzuki T, et al. Isopleths of Surface Air Concentration and Surface Air Absorbed Dose Rate Due to a Radioactive Cloud Released from a Stack (II). Japan: Japan Atomic Energy Research Institute; 1990. (JAERI-M-90-206). Japanese with English abstract.
  • Nakayama H, Satoh D, Nagai H, et al. Development of local-scale high-resolution atmospheric dispersion model using large-eddy simulation part 6: introduction of detailed dose calculation method. J. Nucl. Sci. Technol. 2021;58(9):949–969. DOI:10.1080/00223131.2021.1894256
  • Nakayama H, Onodera N, Satoh D, et al. Development of local-scale high-resolution atmospheric dispersion and dose assessment system. J. Nucl. Sci. Technol. 2022;59(10):1314–1329. DOI:10.1080/00223131.2022.2038302
  • Yoshida T, Nagai H, Terada H, et al. Evaluation of uncertainties derived from meteorological forecast inputs in plume directions predicted by atmospheric dispersion simulations. J. Nucl. Sci. Technol. 2022;59:55–66.