800
Views
2
CrossRef citations to date
0
Altmetric
Article

Application of Bayesian machine learning for estimation of uncertainty in forecasted plume directions by atmospheric dispersion simulations

, , , , &
Pages 1194-1207 | Received 31 Oct 2022, Accepted 27 Jan 2023, Published online: 12 Mar 2023

References

  • Imai K, Chino M, Ishikawa H. SPEEDI: A computer code system for the real-time prediction of radiation dose to the public due to an accidental release. JAERI–1297. Japan: Japan Atomic Energy Research Institute; 1985. p. 93.
  • Nagai H, Chino M, Yamazawa H. Development of scheme for predicting atmospheric dispersion of radionuclides during nuclear emergency by using atmospheric dynamic model. J At Energy Soc Jpn. 1999;41(7):777–785. in Japanese.
  • Headquarters NER report of Japanese government to the IAEA ministerial conference on nuclear safety – The accident at TEPCO’s Fukushima Nuclear Power Stations. Tokyo: Government of Japan; 2011. [cited 2022 Oct 25] Available from: https://japan.kantei.go.jp/kan/topics/201106/iaea_houkokusho_e.html
  • Galmarini S, Bianconi R, Klug W, et al. Ensemble dispersion forecasting—Part I: concept, approach and indicators. Atmos Environ. 2004;38(28):4607–4617. DOI:10.1016/j.atmosenv.2004.05.030
  • Galmarini S, Bianconi R, Addis R, et al. Ensemble dispersion forecasting—part II: Application and evaluation. Atmos Environ. 2004;38(28):4619–4632. DOI:10.1016/j.atmosenv.2004.05.031
  • Draxler R, Arnold D, Chino M, et al. World Meteorological Organization’s model simulations of the radionuclide dispersion and deposition from the Fukushima Daiichi nuclear power plant accident. J Environ Radioact. 2015;139:172–184.
  • Kitayama K, Morino Y, Takigawa M, et al. Atmospheric modeling of 137Cs plumes from the Fukushima Daiichi nuclear power plant—Evaluation of the model intercomparison data of the science council of Japan. J Geophys Res Atmos. 2018;123:7754–7770.
  • Sato Y, Takigawa M, Sekiyama TT, et al. Model intercomparison of atmospheric 137Cs from the FUkushima Daiichi nuclear power plant accident: simulations based on identical input data. J Geophys Res Atmos. 2018;123(20):11–748. DOI:10.1029/2018JD029144
  • Sato Y, Sekiyama TT, Fang S, et al. A model inter- comparison of atmospheric 137Cs concentrations from the Fukushima Daiichi nuclear power plant accident, phase III: simulation with an identical source term and meteorological field at 1-km resolution. Atmos Environ X. 2020;7(100):086. DOI:10.1016/j.aeaoa.2020.100086
  • Kajino M, Sekiyama TT, Igarashi Y, et al. Deposition and dispersion of radio-cesium released due to the Fukushima nuclear accident: sensitivity to meteorological models and physical modules. J Geophys Res Atmos. 2019;124(3):1823–1845. DOI:10.1029/2018JD028998
  • Kajino M, Sekiyama TT, Mathieu A, et al. Lessons learned from atmospheric modeling studies after the Fukushima nuclear accident: ensemble simulations, data assimilation, elemental process modeling, and inverse modeling. Geochem J. 2018;52(2):85–101. DOI:10.2343/geochemj.2.0503
  • Iwasaki T, Sekiyama TT, Nakajima T, et al. Intercomparison of numerical atmospheric dispersion prediction models for emergency response to emissions of radionuclides with limited source information in the Fukushima Dai-ichi nuclear power plant accident. Atmos Environ. 2019;214:116,830.
  • Korsakissok I, Périllat R, Andronopoulos S, et al. Uncertainty propagation in atmospheric dispersion models for radiological emergencies in the pre- and early release phase: summary of case studies. Radioprot. 2020;55:S57–68.
  • Yoshida T, Nagai H, Terada H, et al. Evaluation of uncertainties derived from meteorological forecast inputs in plume directions predicted by atmospheric dispersion simulations. J Nucl Sci Technol. 2022;59(1):55–66. DOI:10.1080/00223131.2021.1951862
  • Terada H, Nagai H, Tanaka A, et al. Atmospheric-dispersion database system that can immediately provide calculation results for various source term and meteorological conditions. J Nucl Sci Technol. 2020;57(6):745–754. DOI:10.1080/00223131.2019.1709994
  • Kim JY, Lee SH, Park TJ. A Methodology for Estimating the Uncertainty in Model Parameters Applying the Robust Bayesian Inferences. J. Radiat Prot Res. 2016;41(2):149–154.
  • Smith J, French S. Bayesian Updating of Atmospheric Dispersion Models for Use After an Accidental Release of Radioactivity. J R Stat Soc. 1993;42(5):501–511.
  • Terada H, Nagai H, Tsuduki K, et al. Refinement of source term and atmospheric dispersion simulations of radionuclides during the Fukushima Daiichi Nuclear Power Station accident. J Environ Radioact. 2020;213:106104.
  • Kim JY, Jan HK, Lee JK. The Robust Bayesian Analysis Due to a Variation of Effective Height in the Atmospheric Dispersion. J Nucl Sci Technol. 2008;45(5):710–713.
  • Gunawardena N, Pollotta G, Simpson M, et al. Machine Learning Emulation of Spatial Deposition from a Multi-physics Ensemble of Weather and Atmospheric Transport Models. Atmosphere. 2021;12(8):953. DOI:10.3390/atmos12080953
  • Skamarock WC, Klemp JB, Dudhia J, et al. A description of the advanced research WRF version 3. USA: National Center for Atmospheric Research; 2008. (NCAR/TN-475STR).
  • Terada H, Chino M. Development of an atmospheric dispersion model for accidental discharge of radio nuclides with the function of simultaneous prediction for multiple domains and its evaluation by application to the Chernobyl nuclear accident. J Nucl Sci Technol. 2008;45(9):920–931.
  • Morrison H, Thompson G, Tatarskii V. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes. Mon Wea Rev. 2009;137(3):991–1007.
  • Janjić ZI. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Wea Rev. 1994;122(5):927–945.
  • Nakanishi M, Niino H. An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound-Lay Meteorol. 2004;112(1):1–31.
  • Mlawer EJ, Taubman SJ, Brown PD, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res Atmos. 1997;102(D14):16663–16682. DOI:10.1029/97JD00237
  • Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci. 1989;46(20):3077–3107.
  • Montgomery DC, Peck EA. Introduction to Linear Regression Analysis. New York: Wiley; 1992.
  • Nakayama H, Satoh D, Nagai H, et al. Development of local-scale high-resolution atmospheric dispersion model using large-eddy simulation part 6: introduction of detailed dose calculation method. J Nucl Sci Technol. 2021;58(9):949–969. DOI:10.1080/00223131.2021.1894256
  • Nakayama H, Onodera N, Satoh D, et al. Development of local-scale high-resolution atmospheric dispersion and dose assessment system. J Nucl Sci Technol. 2022;59(10):1314–1329. DOI:10.1080/00223131.2022.2038302