504
Views
3
CrossRef citations to date
0
Altmetric
Article

Impact of nuclear data revised from JENDL-4.0 to JENDL-5 on PWR spent fuel nuclide composition

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1386-1396 | Received 26 Dec 2022, Accepted 03 Apr 2023, Published online: 28 Apr 2023

References

  • Chiba G, Okumura K, Sugino K, et al. JENDL-4.0 benchmarking for fission reactor applications. J Nucl Sci Technol. 2011;48(2):172–187. DOI:10.1080/18811248.2011.9711692
  • Iwamoto O, Iwamoto N, Shibata K, et al. Status of JENDL. EPJ Web Conf. 2020;239:09002.
  • Iwamoto O, Iwamoto N, Kunieda S, et al. Japanese evaluated nuclear data library version 5: jENDL-5. J Nucl Sci Technol. 2023;60(1):1–60. DOI:10.1080/00223131.2022.2141903
  • Nagaya Y, Yokoyama K, Tada K, et al. Integral tests of preliminary JENDL-5 for critical and shielding experiments. Proceedings of the 2021 Symposium on Nuclear Data; 2021 Nov 18-19; Online Meeting. Tokai-mura (Japan): Japan Atomic Energy Agency; 2022. ( JAEA-Conf 2022-001).
  • Nagaya Y, Tada K JENDL-5 validation, 1; Benchmark tests with the ICSBEP handbook. Proceedings of Atomic Energy Society of Japan 2022 Annual Meeting; 2022 Mar 16-18; Online Meeting. Tokyo (Japan): Atomic Energy Society of Japan; 2022 [in Japanese].
  • Tada K JENDL-5 validation, 2; Comparison of the burn-up calculation for LWR. Proceedings of Atomic Energy Society of Japan 2022 Annual Meeting; 2022 Mar 16-18; Online Meeting. Tokyo (Japan): Atomic Energy Society of Japan; 2022 [in Japanese].
  • Ono M, Tojo M, Tada K, et al. JENDL-5 validation, 3; Investigation of the impact of Am nuclear data improvement. Proceedings of Atomic Energy Society of Japan 2022 Annual Meeting; 2022 Mar 16-18; Online Meeting. Tokyo (Japan): Atomic Energy Society of Japan; 2022 [in Japanese].
  • Tojo M, Ono M, Tada K, et al. JENDL-5 validation, 4; Validation of JENDL-5 under hot condition. Proceedings of Atomic Energy Society of Japan 2022 Annual Meeting; 2022 Mar 16-18; Online Meeting. Tokyo (Japan): Atomic Energy Society of Japan; 2022 [in Japanese].
  • Endo T, Nishioka F, Yamamoto A, et al. Application of dynamic mode decomposition to Rossi-α method in a critical state using file-by-file moving block bootstrap method. J Nucl Sci Technol. 2022;59(9):1117–1126. DOI:10.1080/00223131.2022.2030260
  • Shibata K, Iwamoto O, Nakagawa T, et al. JENDL-4.0: a new library for nuclear science and engineering. J Nucl Sci Technol. 2011;48(1):1–30. DOI:10.1080/18811248.2011.9711675
  • Nakahara Y, Suyama K, Inagawa J, et al. Nuclide composition benchmark data set for verifying burnup codes on spent light water reactor fuels. Nucl Technol. 2002;137(2):111–126. DOI:10.13182/NT02-2
  • Suyama K, Mochizuki H, Kiyosumi T. Revised burnup code system SWAT: description and validation using postirradiation examination data. Nucl Technol. 2002;138(2):97–110.
  • Dalle HM Monte Carlo burnup simulation of the TAKAHAMA-3 benchmark experiment. 2009 International Nuclear Atlantic Conference - INAC 2009; 2009 Sep 27-Oct 2; Rio de Janeiro, RJ, Brazil.
  • Gauld IC, Ilas G, Radulescu G. Uncertainties in predicted isotopic compositions for high burnup PWR spent nuclear fuel. NUREG/CR-7012 ORNL/TM-2010/41. Oak Ridge (TN): Oak Ridge National Laboratory; 2011.
  • Leppänen J, Pusa M, Viitanen T, et al. The serpent Monte Carlo code: status, development and applications in 2013. Ann Nucl Energy. 2015;82:142–150.
  • Pusa M. Rational approximations to the matrix exponential in burnup calculations. Nucl Sci Eng. 2011;169(2):155–167.
  • Suyama K, Uchida Y, Kashima T, et al. Burn-up credit criticality safety benchmark phase III-C. Paris, France: OECD/NEA; 2016. NEA/NSC/R(2015)6.
  • Leppänen J, Aufiero M, Fridman E, et al. Calculation of effective point kinetics parameters in the Serpent 2 Monte Carlo code. Ann Nucl Energy. 2014;65:272–279.
  • Lötsch T. Fuel assembly burnup calculations for VVER fuel assemblies with the MONTE CARLO code SERPENT. Kerntechnik. 2014;79(4):295–302.
  • Mercatali L, Venturini A, Daeubler M, et al. SCALE and SERPENT solutions of the OECD VVER-1000 LEU and MOX burnup computational benchmark. Ann Nucl Energy. 2015;83:328–341.
  • Pecchia M, Wicaksono D, Grimm P, et al. Validation of Monte Carlo based burnup codes against LWR-PROTEUS phase-II experimental data. Ann Nucl Energy. 2016;97:153–164.
  • Errata of JENDL-5 sublibraries [Internet]. [cited 2022 Oct 26]. Available from: https://wwwndc.jaea.go.jp/jendl/j5/JENDL-5_Errata.html
  • JENDL-4.0u & JENDL4.0+ [Internet]. [cited 2022 Oct 26]. Available from: https://wwwndc.jaea.go.jp/jendl/j40/update/
  • Katakura J, Minato F. JENDL decay data file 2015. JAEA-Data/Code 2015-030. Tokai-mura, Japan: Japan Atomic Energy Agency; 2016.
  • Conlin JL, editor. A compact ENDF (ACE) format specification. Los Alamos (NM): Los Alamos National Laboratory; 2019. (LA. (LAUR1929016).1929016).
  • Tada K, Nagaya Y, Kunieda S, et al. Development and verification of a new nuclear data processing system FRENDY. J. Nucl. Science Technol. 2017;54(7):806–817. DOI:10.1080/00223131.2017.1309306
  • Tada K, Yamamoto A, Endo T, et al. Development of nuclear data processing code FRENDY version 2. Proceedings of International Conference on Physics of Reactors 2022 (PHYSOR 2022); 2022 May 15-20; Pittsburgh (PA). Lagrange Park (IL): American Nuclear Society; 2022.
  • Trkov A, Brown DA. ENDF-6 formats manual: data formats and procedures for the evaluated nuclear data files. (BNL-203218-2018-INRE). Upton (NY): Brookhaven National Laboratory; 2018.
  • Tohjoh M, Watanabe M, Yamamoto A. Study of the spatial discretization and temperature distribution approximation effects on BWR assembly calculations. Ann Nucl Energy. 2006;33(2):170–179.
  • Suyama K, Mochizuki H, Takada T, et al. SWAT3.1 - the integrated burnup code system driving continuous energy Monte Carlo codes MVP and MCNP. Tokai-mura (Japan): Japan Atomic Energy Agency; 2009. (JAEA-Data/Code 2009-002) [in Japanese].
  • Nakahara Y, Suyama K, Suzuki T. Technical development on burn-up credit for spent PWR fuels. (JAERI-Tech 2000-071) [in Japanese]. Tokai-mura (Japan): Japan Atomic Energy Research Institute; 2000.
  • Stamm’ler RJJ, Abbate MJ. Methods of steady-state reactor physics in nuclear design. London: Academic Press; 1983.
  • Expert Group on Assay Data of Spent Nuclear Fuel. Spent nuclear fuel assay data for isotopic validation. Paris, France: OECD/NEA; 2011. NEA/NSC/WPNCS/DOC(2011)5.
  • Tohjoh M, Endo T, Watanabe M, et al. Effect of error propagation of nuclide number densities on Monte Carlo burn-up calculations. Ann Nucl Energy. 2006;33(17–18):1424–1436. DOI:10.1016/j.anucene.2006.09.010
  • Oizumi A, Jin T, Yokoyama K, et al. Database for nuclear data sensitivity of burnup composition in light water reactors. Tokai-mura, Japan: Japan Atomic Energy Agency; 2014. JAEA-Data/Code 2013-019 [in Japanese].
  • Wieselquist W, Lefebvre R, Jessee M. SCALE code system. ORNL/TM-2005/39 Version 6.2.4. Oak Ridge (TN): Oak Ridge National Laboratory; 2020.
  • Chiba G. Burnup sensitivity calculations with CBZ for light water reactor assembly problems. EPJ Web Conf. 2021;247:15013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.