193
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

Simulated performance evaluation of d-Be compact fast neutron source

Pages 1447-1453 | Received 30 Jan 2023, Accepted 08 Jun 2023, Published online: 06 Jul 2023

References

  • Seki Y, Taketani A, Hashiguchi T, et al. Fast neutron transmission imaging of the interior of large-scale concrete structures using a newly developed pixel-type detector. Nucl Instrum Methods Phys Res Sect A. 2017;870:148–155. doi:10.1016/j.nima.2017.07.022
  • Ikeda Y, Otake Y, Mizuta M. Nondestructive measurement method to detect water/void inside slabs using compact neutron source by backscattered neutrons. J Adv Concr Technol. 2017;15(10):603–609. doi: 10.3151/jact.15.603
  • Otake Y, Ott F, Menelle A, et al. RIKEN Accelerator-driven compact neutron systems. EPJ Web Conf. 2020;231:01009. doi:10.1051/epjconf/202023101009
  • Otake Y, Seki Y, Wakabayashi Y, et al. Research and development of a non-destructive inspection technique with a compact neutron source. J Disaster Res. 2017;12(3):585–592. doi: 10.20965/jdr.2017.p0585
  • Kononov VN, Bokhovko MV, Kononov OE, et al. Accelerator-based fast neutron sources for neutron therapy. Nucl Instrum Methods Phys Res Sect A. 2006;564(1):525–531. doi: 10.1016/j.nima.2006.03.043
  • Kobayashi T, Ikeda S, Otake Y, et al. Completion of a new accelerator-driven compact neutron source prototype RANS-II for on-site use. Nucl Instrum Methods Phys Res Sect A. 2021;994:165091. doi:10.1016/j.nima.2021.165091
  • Kiyanagi Y. Neutron applications developing at compact accelerator-driven neutron sources. AAPPS Bull. 2021;31(1):22. doi: 10.1007/s43673-021-00022-3
  • Zou Y, Wen W, Guo Z, et al. PKUNIFTY: A neutron imaging facility based on an RFQ accelerator. Nucl Instrum Methods Phys Res Sect A. 2011;651(1):62–66. doi: 10.1016/j.nima.2011.02.011
  • Capoulat ME, Minsky DM, Kreiner AJ. Applicability of the 9Be(d,n)10B reaction to AB-BNCT skin and deep tumor treatment. Appl Radiat Isot. 2011;69(12):1684–1687. doi: 10.1016/j.apradiso.2011.02.015
  • Iwamoto O, Iwamoto N, Kunieda S, et al. Japanese evaluated nuclear data library version 5: Jendl-5. J Nucl Sci Technol. 2023;60(1):1–60. doi: 10.1080/00223131.2022.2141903
  • Nakayama S, Iwamoto O, Watanabe Y, et al. JENDL/DEU-2020: deuteron nuclear data library for design studies of accelerator-based neutron sources. J Nucl Sci Technol. 2021;58(7):805–821. doi: 10.1080/00223131.2020.1870010
  • Koning A, Rochman D, Sublet JC, et al. TENDL: complete nuclear data library for innovative nuclear science and technology. Nucl Data Sheets. 2019;155:1–55. doi:10.1016/j.nds.2019.01.002
  • Kwon S, Konno C, Ohta M, et al. Problems on neutron production data of be-9 in TENDL-2017 and -2019 deuteron sub-libraries. Ann Nucl Energy. 2022;169:108932. doi:10.1016/j.anucene.2021.108932
  • Sato T, Iwamoto Y, Hashimoto S, et al. Features of particle and heavy ion transport code system (PHITS) version 3.02. J Nucl Sci Technol. 2018;55(6):684–690. doi: 10.1080/00223131.2017.1419890
  • Conlin JL, Romano P. A Compact ENDF (ACE) format specification. LA-UR-19-29016. Los Alamos, NM: Los Alamos National Laboratory; 2019.
  • ACE-J50. Tokai, Japan: Japan atomic energy agency. [cited 2023 Apr 22]. Available from: https://rpg.jaea.go.jp/main/en/ACE-J50/
  • TENDL-2021 Application libraries. Vienna, Austria: International atomic energy agency. [cited 2023 Apr 22]. Available from: https://tendl.web.psi.ch/tendl_2021/tar.html
  • Zuo Y, Tang G, Guo Z, et al. Neutron yields of thick be target bombarded with low energy deuterons. Phys Procedia. 2014;60:220–227. doi:10.1016/j.phpro.2014.11.031
  • Colonna N, Beaulieu L, Phair L, et al. Measurements of low-energy (d,n) reactions for BNCT. Med Phys. 1999;26(5):793–798. doi: 10.1118/1.598599
  • Whittlestone S. Neutron distributions from the deuteron bombardment of a thick beryllium target. J Phys D Appl Phys. 1977;10(13):1715–1723. doi: 10.1088/0022-3727/10/13/005
  • Inada T, Kawachi K, Hiramoto T, et al. Neutrons from thick target beryllium (d,n) reactions at 1.0 MeV to 3.0 MeV. J Nucl Sci Technol. 1968;5(1):22–29. doi: 10.1080/18811248.1968.9732391
  • Guzek J, Tapper UAS, McMurray WR, et al. Characterization of the 9Be(d,n)10B reaction as a source of neutrons employing commercially available radio frequency quadrupole (RFQ). In: Proceedings of Fifth International Conference on Applications of Nuclear Techniques: Neutrons in Research and Industry; 1996 Jun 9-15; Crete, Greece: 1997. p. 509–512. Proc of SPIE 2867. DOI:10.1117/12.267963.
  • Capoulat ME, Sauzet N, Valda AA, et al. Neutron spectrometry of the 9Be(d (1.45 MeV), n)10B reaction for accelerator-based BNCT. Nucl Instrum Methods Phys Res Sect B. 2019;445:57–62. doi:10.1016/j.nimb.2019.03.005
  • Sugihara K, Ikeda Y, Kobayashi T, et al. Radiation field characterization with emphasis on the collimator configuration at the compact neutron source RANS-II facility. J Nucl Sci Technol. 2023;60(2):110–123. doi: 10.1080/00223131.2022.2088632
  • Yamagata Y, Hirota K, Ju J, et al. Development of a neutron generating target for compact neutron sources using low energy proton beams. J Radioanal Nucl Chem. 2015;305(3):787–794. doi: 10.1007/s10967-015-4059-8
  • International Commission on Radiological Protection. Conversion coefficients for radiological protection quantities for external radiation exposures. Ann. ICRP. 2010;40(2–5):1–257.
  • Cai Y, Hu H, Lu S, et al. Optimization of radiation shielding material aiming at compactness, lightweight, and low activation for a vehicle-mounted accelerator-driven DT neutron source. Appl Radiat Isot. 2018;135:147–154. doi:10.1016/j.apradiso.2018.01.021
  • Ziegler JF, Ziegler MD, Biersack JP. SRIM –The stopping and range of ions in matter (2010). Nucl Instrum Methods Phys Res Sect B. 2010;268(11–12):1818–1823. doi: 10.1016/j.nimb.2010.02.091
  • Uesaka M, Dobayashi K, Fujiwara T, et al. On-site nondestructive inspection by upgraded portable 950 keV/3.95 MeV X-band linac x-ray sources. J Phys B. 2014;47(23):234008. doi: 10.1088/0953-4075/47/23/234008
  • Carpenter JM. The development of compact neutron sources. Nat Rev Phys. 2019;1(3):177–179. doi: 10.1038/s42254-019-0024-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.