251
Views
0
CrossRef citations to date
0
Altmetric
Articles

Simulation using representative data selection for transboundary radiation effect evaluation by Nuclear Accident Consequence Analysis Code (NACAC)

, , ORCID Icon, &
Pages 327-342 | Received 11 Jan 2023, Accepted 25 Jun 2023, Published online: 13 Jul 2023

References

  • Long P, Hien P, Quang N. Atmospheric transport of 131I and 137Cs from Fukushima by the East Asian northeast monsoon. J Environ Radioact. 2019;197:74–80. doi: 10.1016/j.jenvrad.2018.12.003
  • Giaiotti D, Oshurok D, Skrynyk O. The Chernobyl nuclear accident 137Cs cumulative depositions simulated by means of the CALMET/CALPUFF modelling system. Atmos Pollut Res. 2018;9(3):502–512. doi: 10.1016/j.apr.2017.11.007
  • Grambow B, Nitta A, Shibata A, et al. Ten Years after the NPP accident at Fukushima: review on fuel debris behavior in contact with water. J Nucl Sci Technol. 2022;59(1):1–24. doi: 10.1080/00223131.2021.1966347
  • Kubo K, Jang S, Takata T, et al. Dynamic probabilistic risk assessment of seismic-induced flooding in pressurized water reactor by seismic, flooding, and thermal-hydraulics simulations. J Nucl Sci Technol. 2022;60(4):1–15. doi: 10.1080/00223131.2022.2100837
  • Nagai H, Furuta Y, Nakayama H, et al. Quantitative visualization of a radioactive plume with harmonizing gamma-ray imaging spectrometry and real-time atmospheric dispersion simulation based on 3D wind observation. J Nucl Sci Technol. 2023;1–16.
  • Kadowaki M, Nagai H, Yoshida T, et al. Application of Bayesian machine learning for estimation of uncertainty in forecasted plume directions by atmospheric dispersion simulations. J Nucl Sci Technol. 2023;1–14.
  • Hidaka A, Kawashima S, Kajino M. Radio-tellurium released into the environment during the complete oxidation of fuel cladding, containment venting and reactor building failure of the Fukushima accident. J Nucl Sci Technol. 2023;60(7):1–16. doi: 10.1080/00223131.2022.2142311
  • Sato Y, Terasaka Y. Radiation imaging using an integrated radiation imaging system based on a compact Compton camera under unit 1/2 exhaust stack of Fukushima Daiichi nuclear power station. J Nucl Sci Technol. 2022;59(6):677–687. doi: 10.1080/00223131.2021.2001391
  • Yamasaki S, Utsunomiya S. A review of efforts for volume reduction of contaminated soil in the ten years after the accident at the Fukushima Daiichi nuclear power plant. J Nucl Sci Technol. 2022;59(2):135–147. doi: 10.1080/00223131.2021.1974596
  • Yamashita S, Ohto H, Abe M, et al. Comprehensive health risk management after the Fukushima nuclear power plant accident. J Clin Oncol. 2016;28(4):255–262. doi: 10.1016/j.clon.2016.01.001
  • Mohammed Saeed IM, Mohammed Saleh MA, Hashim S, et al. Atmospheric dispersion modeling and radiological safety assessment for expected operation of Baiji nuclear power plant potential site. Ann Nucl Energy. 2019;127:156–164. doi: 10.1016/j.anucene.2018.11.045
  • Alrammah I, Mohammed Saeed IM, Mhareb MHA, et al. Atmospheric dispersion modeling and radiological environmental impact assessment for normal operation of a proposed pressurized water reactor in the eastern coast of Saudi Arabia. Prog Nucl Energy. 2022;145:104121. doi: 10.1016/j.pnucene.2022.104121
  • Collins HE, Grimes BK, Galpin F. Planning basis for the development of state and local government radiological emergency response plans in support of light water nuclear power plants. Washington, DC (USA): Nuclear Regulatory Commission; 1978.
  • European C, Directorate-General for Employment SA, Inclusion. Methods for assessing the off-site radiological consequences of nuclear accidents. Luxembourg: Commission of the European communities; 1986.
  • Jones J, Bixler N, Burns S, et al. Review of NUREG-0654, Supplement 3 ‘Criteria for Protective Action Recommendations for Severe Accidents’. NM: Citeseer; 2007.
  • Hummel DW, Chouhan S, Lebel L, et al. Radiation dose consequences of postulated limiting accidents in small modular reactors to inform emergency planning zone size requirements. Ann Nucl Energy. 2020;137:107062. doi: 10.1016/j.anucene.2019.107062
  • Hernández-Ceballos MA, Sangiorgi M, García-Puerta B, et al. Dispersion and ground deposition of radioactive material according to airflow patterns for enhancing the preparedness to N/R emergencies. J Environ Radioact. 2020;216:106178. doi: 10.1016/j.jenvrad.2020.106178
  • Wu J, Yang Y-M, Chen I-J, et al. Reevaluation of the emergency planning zone for nuclear power plants in Taiwan using MACCS2 code. Appl Radiat Isot. 2006;64(4):448–454. doi: 10.1016/j.apradiso.2005.11.006
  • Kim N-H, Hwang W-T, Kim C-L. A study on annual atmospheric dispersion factors between continuous and purge releases of gaseous radioactive effluents. J Nucl Fuel Cycle Waste Technol (JNFCWT). 2021;19(2):177–186. doi: 10.7733/jnfcwt.2021.19.2.177
  • Zhu Y, Guo J, Nie C, et al. Simulation and dose analysis of a hypothetical accident in Sanmen nuclear power plant. Ann Nucl Energy. 2014;65:207–213. doi: 10.1016/j.anucene.2013.11.016
  • Park S-U, Lee I-H, Joo SJ, et al. Emergency preparedness for the accidental release of radionuclides from the Uljin nuclear power plant in Korea. J Environ Radioact. 2017;180:90–105. doi: 10.1016/j.jenvrad.2017.09.012
  • Bi S, Kiaghadi A, Schulze BC, et al. Simulation of potential formation of atmospheric pollution from aboveground storage tank leakage after severe storms. Atmos Environ. 2021;248:118225. doi: 10.1016/j.atmosenv.2021.118225
  • Klein H, Bartnicki J, Brown JE, et al. Consequences for Norway from a hypothetical accident at the Sellafield reprocessing plant: Atmospheric transport of radionuclides. J Environ Radioact. 2021;237:106703. doi: 10.1016/j.jenvrad.2021.106703
  • Leung WH, Ma WM, Chan PKY. Nuclear accident consequence assessment in Hong Kong using JRODOS. J Environ Radioact. 2018;183:27–36. doi: 10.1016/j.jenvrad.2017.12.002
  • Nitoi M. Investigating the recurrence of meteorological hazards. Prog Nucl Energy. 2016;89:39–45. doi: 10.1016/j.pnucene.2016.02.005
  • Rudas C, Pázmándi T. Consequences of selecting different subsets of meteorological data to utilize in deterministic safety analysis. J Environ Radioact. 2020;225:106428. doi: 10.1016/j.jenvrad.2020.106428
  • Takahara S, Homma T, editors Analysis for relocation strategy using the method of probabilistic accident consequence assessment. Proceedings of IRPA12: 12. Congress of the International Radiation Protection Association: Strengthening Radiation Protection Worldwide-Highlights, Global Perspective and Future Trends Buenos Aires, Argentina; 2010.
  • Silva K, Vechgama W. Consideration of change over time in nuclear accident consequence assessment to support optimization of long-term remediation strategy. Nucl Eng Des. 2021;373:111022. doi: 10.1016/j.nucengdes.2020.111022
  • Khunsrimek N, Krisanungkura P, Vechgama W, et al. Verification of the NACAC atmospheric dispersion calculation using a hypothetical accident in a neighboring nuclear power plant. Prog Nucl Energy. 2023;156:104532. doi: 10.1016/j.pnucene.2022.104532
  • IAEA. Generic procedures for monitoring in a nuclear or radiological emergency. Vienna: International Atomic Energy Agency; 1999.
  • de la Rosa Blul JC. Determination of emergency planning zones distances and scaling-based comparison criteria for downsized Nuclear Power Plants. Nucl Eng Des. 2021;382:111367. doi: 10.1016/j.nucengdes.2021.111367
  • Carless TS, Talabi SM, Fischbeck PS. Risk and regulatory considerations for small modular reactor emergency planning zones based on passive decontamination potential. Energy. 2019;167:740–756. doi: 10.1016/j.energy.2018.10.173
  • Min JS, Kim HR. Environmental impact on the Korean peninsula due to hypothetical accidental scenarios at the Haiyang nuclear power plant in China. Prog Nucl Energy. 2018;105:254–262. doi: 10.1016/j.pnucene.2018.01.012
  • Yoshikane T, Yoshimura K. Dispersion characteristics of radioactive materials estimated by wind patterns. Sci Rep. 2018;8(1):9926. doi: 10.1038/s41598-018-27955-4
  • Leadbetter SJ, Hort MC, Jones AR, et al. Sensitivity of the modelled deposition of Caesium-137 from the Fukushima Dai-ichi nuclear power plant to the wet deposition parameterisation in NAME. J Environ Radioact. 2015;139:200–211. doi: 10.1016/j.jenvrad.2014.03.018
  • Srinivas CV, Hari Prasad KBRR, Naidu CV, et al. Sensitivity analysis of atmospheric dispersion simulations by FLEXPART to the WRF-Simulated meteorological predictions in a coastal environment. Pure Appl Geophys. 2016;173(2):675–700. doi: 10.1007/s00024-015-1104-z
  • Leelőssy Á, Lagzi I, Kovács A, et al. A review of numerical models to predict the atmospheric dispersion of radionuclides. J Environ Radioact. 2018;182:20–33. doi: 10.1016/j.jenvrad.2017.11.009
  • Talerko N. Mesoscale modelling of radioactive contamination formation in Ukraine caused by the Chernobyl accident. J Environ Radioact. 2005;78(3):311–329. doi: 10.1016/j.jenvrad.2004.04.008
  • Stohl A, Seibert P, Wotawa G, et al. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmos Chem Phys. 2012;12(5):2313–2343. doi: 10.5194/acp-12-2313-2012
  • Baró R, Maurer C, Brioude J, et al. The environmental effects of the April 2020 wildfires and the Cs-137 re-suspension in the Chernobyl exclusion zone: a multi-hazard threat. Atmos. 2021;12(4):467. doi: 10.3390/atmos12040467
  • Muswema JL, Darko EO, Gbadago JK, et al. Atmospheric dispersion modeling and radiological safety analysis for a hypothetical accident of Ghana Research Reactor-1 (GHARR-1). Ann Nucl Energy. 2014;68:239–246. doi: 10.1016/j.anucene.2014.01.029
  • Veigele WJ, Head JH. Derivation of the gaussian plume model. J Air Pollut Control Assoc. 1978;28(11):1139–1140. doi: 10.1080/00022470.1978.10470720
  • Arya SP. Air pollution meteorology and dispersion. Vol. 310. United Kingdom: Oxford University Press; 1999.
  • Thykier-Nielsen S, Deme S, Mikkelsen T. Description of the atmospheric dispersion module RIMPUFF. Denmark: Riso National Laboratory, 1999. 49.
  • Stohl A, Forster C, Frank A, et al. Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos Chem Phys. 2005;5(9):2461–2474. doi: 10.5194/acp-5-2461-2005
  • IAEA. Generic models for use in assessing the impact of discharges of radioactive substances to the environment. Vienna: International Atomic Energy Agency; 2001.
  • Kimura M, Takahara S, Homma T. Evaluation of the precautionary action zone using a probabilistic consequence analysis. J Nucl Sci Technol. 2013;50(3):296–303. doi: 10.1080/00223131.2013.772725
  • Dvorzhak A, Mora JC, Robles B. Probabilistic risk assessment from potential exposures to the public applied for innovative nuclear installations. Reliab Eng Syst Saf. 2016;152:176–186. doi: 10.1016/j.ress.2016.03.008
  • Choi G-S, Lim J-M, Lim K-S, et al. Characteristics of regional scale atmospheric dispersion around Ki-Jang research reactor using the Lagrangian Gaussian puff dispersion model. Nucl Eng Technol. 2018;50(1):68–79. doi: 10.1016/j.net.2017.10.002
  • Kaviani F, Memarian MH, Eslami-Kalantari M. Radioactive impact on Iran and the world from a postulated accident at Bushehr nuclear power plant. Prog Nucl Energy. 2021;142:103991. doi: 10.1016/j.pnucene.2021.103991
  • Silva K, Ishiwatari Y, Takahara S. Cost per severe accident as an index for severe accident consequence assessment and its applications. Reliab Eng Syst Saf. 2014;123:110–122. doi: 10.1016/j.ress.2013.11.004
  • Van Wonderen E, Van der Steen I, Hasemann I. COSYMA: Users Intercomparison Exercise. EUR 15108, European Communities; 1994.
  • Panitz H-J, Matzerath C, Päsler-Sauer J. UFOMOD-atmospheric dispersion and deposition. Kernforschungszentrum Karlsruhe GmbH in Germany. 1989.
  • Liu X, Homma T. Variation of Radiological Consequences under Various Weather Conditions JAERI-Tech 2001-054. Tokai-mura, Naka-gun, Ibaraki-ken: Japan Atomic Energy Research Inst; 2001.
  • Kelly GN. Cosyma a new programme package for accident consequence assessment. EUR 13028: Luxembourg: Commission of the European Communities; 1990.
  • Homma T, Tomita K, Hato S. Uncertainty and sensitivity studies with the probabilistic accident consequence assessment code OSCAAR. Nucl Eng Technol. 2005;37(3):245–258.
  • Homma T, Ishikawa J, Tomita K, et al. Radiological consequence assessments of degraded core accident scenarios derived from a generic Level 2 PSA of a BWR JAERI-RESEARCH--2000-060 Japan: Japan Atomic Energy Research Inst; 2000.
  • Thiessen K, Napier B, Filistovic V, et al. Model testing using data on 131I released from Hanford. J Environ Radioact. 2005;84(2):211–224. doi: 10.1016/j.jenvrad.2004.01.043
  • Thiessen K, Sazykina T, Apostoaei A, et al. Model testing using data on 137Cs from Chernobyl fallout in the Iput River catchment area of Russia. J Environ Radioact. 2005;84(2):225–244. doi: 10.1016/j.jenvrad.2004.10.016
  • Shapiro B. 1990 recommendations of the international commission on radiological protection: ICRP publication 60, Pergamon press, 1991. Eur J Radiol. 1992;15(1):93.
  • Evans J. S, Abrahamson, S, Bender, MA et al. Health Fffects Models for Nuclear Power Plant Accident Consequence Analysis NUREG/CR-4214 . NM: Inhalation Ibxicology Research Institute Lovelace Biomedical and Environmental Research Institute; 1993.
  • Kocher D. Dose-rate conversion factors for external exposure to photon and electron radiation from radionuclides occurring in routine releases from nuclear fuel cycle facilities NUREG/CR-0494 . Oak Ridge, TN, United States: Oak Ridge National Lab; 1979.
  • Silva K, Krisanungkura P, Khunsrimek N, et al. Inter-comparison of transboundary atmospheric dispersion calculations: A summary of outputs from the ASEAN NPSR benchmark exercise. Prog Nuclear Energy. 2021;135:103718. doi: 10.1016/j.pnucene.2021.103718
  • Suzhou thermal research institute. Fangchenggang nuclear power plant phase II (2 × HL1000-1) project environmental impact report for units 3 and 4 (site selection stage). 2014. 436–445.https://www.mee.gov.cn/ywgz/hjyxpj/jsxmhjyxpj/xmslqk/201605/W020160522145040477354.pdf
  • Saha S, Moorthi S, Wu X, et al. NCEP Climate Forecast System Version 2 (CFSv2) 6-hourly Products. Boulder, CO: Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory; 2011.
  • Bijlholt J, Constantinou C, Janssens A, et al. HERCA-WENRA Approach for a better cross-border coordination of protective actions during the early phase of a nuclear accident. 2014.
  • Leute J, Walton F, Mitchell R, et al. MACCS (MELCOR Accident Consequence Code System) User Guide–Version 4.0. 2021.
  • MANOBS. Manual of surface weather observation standards. Meteorological Service Of Canada: Meteorological Service Of Canada; 2021. Available from: https://publications.gc.ca/site/eng/9.907779/publication.html.
  • IAEA. Actions to Protect the Public in an Emergency due to Severe Conditions at a Light Water Reactor. Vienna: International Atomic Energy Agency; 2013.
  • Protection R. ICRP publication 103. Ann ICRP. 2007;37(2.4):2.
  • IAEA. Criteria for use in preparedness and response for a nuclear or radiological emergency. Vienna: International Atomic Energy Agency; 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.