121
Views
0
CrossRef citations to date
0
Altmetric
Article

Evaluation method of hydrogen generation rate by water radiolysis in fuel debris canisters considering the radiation energy absorption rate of water dependence on particle size

, , , , &
Pages 1595-1613 | Received 14 Dec 2022, Accepted 15 Jun 2023, Published online: 20 Jul 2023

References

  • International Research Institute for Nuclear Decommissioning. Technical strategic plan 2021 for decommissioning of the Fukushima Daiichi nuclear power station of Tokyo electric power company holdings, Inc. 2021 Oct 29; Available from: https://www.dd.ndf.go.jp/strategic-plan/.
  • Henrie JO, Appel JN. Evaluation of specific safety issue associated with handling the Three Mile Island unit 2 core debris. (GEND-052). Idaho Falls, ID: EG&G Idaho, Inc; 1985.
  • Schmitt RC, Quinn GJ, Tyacke MJ. Historical summary of the Three Mile Island Unit 2 core debris transportation campaign. (DOE/ID-10400). Idaho Falls, ID: EG&G Idaho, Inc; 1993.
  • Reno HW, Schmitt RC. Historical summary of the fuel and waste handling and disposition activities of the TMI-2 information and examination program (1980-1988). (EGG-2529). Idaho Falls, ID: EG&G Idaho, Inc; 1988.
  • Turner SE. Radiolytic decomposition of water in water-moderated reactors under accident conditions. Reactor Fuel Pro Tech. 1968;12:66–79.
  • Akers DW, Schnitzler BG. Verification of the ORIGEN2 CODE analysis for the TMI-2 reactor core. (EGG-M-34487). Idaho Falls, ID: EG&G Idaho, Inc; 1989.
  • Nishihara K, Iwamoto T, Suyama K. Estimation of fuel compositions in Fukushima-Daiichi nuclear power plant. (JAEA-Data/Code 2012-018). Tokai, Ibaraki: Japan Atomic Energy Agency; 2012.
  • Anderson BL, Sheaffer MK, Fisher LE. Hydrogen generation in TRU waste transportation package. (NUREG/CR-6673). Rockville, MD: United States Nuclear Regulatory Commission; 2000.
  • Bibler NE, Pareizs JM, Fellinger TL et al. Measurement and prediction of radiolytic hydrogen production in defense waste processing slurries at Savannah River site. Proc. 2007 Waste Management Symposium; 2007 Feb 25-Mar 1; Tucson, AZ.
  • Flaherty JE, Fujita A, Deltete CP et al. A Calculational technique to predict combustion gas generation in sealed radioactive waste. (GEND-041). Idaho Falls, ID: EG&G Idaho, Inc; 1986.
  • Wittman RS, Hanson BD. Radiolysis model analysis for a used storage canister. In: Int’l high-level radioactive waste management conf. Charleston, SC: American Nuclear Society; 2015 Apr 12-16; pp. 486–500.
  • Dzaugis ME, Spivack AJ, D’Hondt S. A qualitative model of water radiolysis and chemical production rates near radionuclide-containing solids. Radiat Phys Chem. 2015;115:127–134. doi: 10.1016/j.radphyschem.2015.06.011
  • Kurata M, Okuzumi N, Nakayoshi A et al. Step-by-step challenge of debris characterization for the decommissioning of Fukushima-Daiichi Nuclear Power Station (FDNPS). J Nucl Sci Technol. 2022;59(7):807–834. doi: 10.1080/00223131.2022.2040393
  • Spinks JWT, Wood RJ. An introduction to radiation chemistry. Third ed. New York, NY: John Wiley & Sons, Inc; 1990.
  • Iwamoto Y, Sato T, Hashimoto S et al. Benchmark study of the recent version of the PHITS code. J Nucl Sci Technol. 2017;54(5):617–635. doi: 10.1080/00223131.2017.1297742
  • International Research Institute for Nuclear Decommissioning. Development of technology for collection, transfer, and storage of fuel debris. 2018 Mar; Available from: https://irid.or.jp/en/research/20170000/.
  • Mizushima S. Editorial Board of the Chemistry Encyclopedia. In: Chemistry Encyclopedia. Vol. 3. Tokyo, Japan: Kyoritsu Shuppan Co., Ltd.; 1997; p 897.
  • Olsson M, Jakobsson AM, Albinsson Y. Surface charge densities of two actinide(IV) oxides: UO2 and ThO2. J Colloid Int Sci. 2002;256(2):256–261. doi: 10.1006/jcis.2002.8586
  • Parks GA. The isoelectric points of solids, solid hydroxide, and aqueous hydroxo complex systems. Chem Rev. 1965;65(2):177–198. doi: 10.1021/cr60234a002
  • Endrizzi F, Gaona X, Fernandes MM et al. Solubility and hidrosis of U(VI) in 0.5 mol/kg NaCl solution at T = 22 and 80 °C. J Chem Thermodyn. 2018;120:45–53. doi: 10.1016/j.jct.2018.01.006
  • Ferradini C, Jay-Gerin JP. The Effect of pH on water radiolysis: a still open question – mini review. Res Chem Intermed. 2000;26:549–565. doi: 10.1163/156856700X00525
  • Ludwig SB, Renier JP. Standard- and extended-burnup PWR and BWR reactor models for ORIGEN2 computer code. (ORNL/TM-11018). Oak Ridge, TN: Oak Ridge National Laboratory; 1989.
  • Shibata K, Iwamoto O, Nakagawa T et al. JENDL-4.0: A new library for nuclear science and engineering. J Nucl Sci Technol. 2011;48(1):1–30. doi: 10.1080/18811248.2011.9711675
  • Okumura K, Sugino K, Kojima K et al. A Set of ORIGEN2 Cross Section Libraries Based on JENDL-4.0: ORLIBJ40. (JAEA-Data/Code 2012-032). Tokai, Ibaraki: Japan Atomic Energy Agency; 2013.
  • Christensen H, Sunder S. Current state of knowledge of water radiolysis effects on spent nuclear fuel corrosion. Nucl Technol. 2000;131(1):102–123. doi: 10.13182/NT00-A3107
  • Ito N. Latest applied physics series. Vol.4. Radiation condensed matter physics 1. Tokyo, Japan: Morikita Publishing Co., Ltd; 1981. pp. 211–255.
  • National Institute of Standards and Technology. Stopping-power & range tables for electrons, protons, and helium ions. Available from: https://www.nist.gov/pml/stopping-power-range-tables-electrons-protons-and-helium-ions.
  • Dosimetry of external beta rays for radiation protect. Bethesda, MD: International Commission on Radiation Units and Measurement; 1997. (ICRU Report 56).
  • Bé M-M, Chisté V, Dulieu C et al. Table of radionuclides (Vol.3 – a = 3 to 244). Breteuil, France: Bureau International des Poids Mesures; 2006. p 91.
  • Nelms AT. Graphs of the Compton energy – angle relationship and the Klein – Nishina formula from 10 keV to 500 MeV. (National Bureau of Standard Circular 542). Gaithersburg, MD: National Bureau of Standard; 1953.
  • Hishida M.Study on behavior of hydrogen generation due to radiolysis during the transport of damaged fuel from Fukushima Daiichi Nuclear Power Station. In: Proc of the 18th Int’l Symp. on the Packing and Transportation of Radioactive Materials PATRAM 2016. Kobe, Japan; 6030; 2016 Sep 18-26.
  • Karasawa H, Ibe E, Uchida S et al. Radiation induced decomposition of nitrogen. Radiat Phys Chem. 1991;37(2):193–197. doi: 10.1016/1359-0197(91)90126-M
  • Kekki T, Zillacus R. Formation of nitric acid during high gamma dose radiation. (VTT-R-00774-11). Otaniemi, Finland: VTT Technical Research Centre of Finland Ltd; 2011.
  • Mahlman HA, Boyle JW. Hydrogen yields in aqueous sodium nitrate solution by cobalt-60 gamma-ray radiation. J Phys Chem. 1957;27(6):1434. doi: 10.1063/1.1744041
  • Kleykamp H. The chemical state of the fission products in oxide fuels. J Nucl Mater. 1985;131(2–3):221–246. doi: 10.1016/0022-3115(85)90460-X
  • Zhu Z, Noël J, Shoesmith DW. Hydrogen peroxide decomposition on simulated nuclear fuel bicarbonate/carbonate solutions. Electrochimica Acta. 2020;340:135980. doi: 10.1016/j.electacta.2020.135980
  • Nilsson S, Jonsson M. On the catalytic effects of UO2(s) and Pd(s) on the reaction between H2O2 and H2 in aqueous solution. J Nucl Mater. 2008;372(2–3):160–163. doi: 10.1016/j.jnucmat.2007.03.040
  • International Research Institute for Nuclear Decommissioning. Development of technology for collection, transfer, and storage of fuel debris. 2019 Jun; Available from:https://irid.or.jp/en/research/20180000/.
  • Matsushita Y, Uchiyama H, Matsuoka T et al. Development of fuel debris canister (13) Effect of alpha-rays on hydrogen production using spent fuel. Proc. Fall Meetings of Atomic Energy Society of Japan; 2018 Sept. 5-7; Okayama, Japan. 3C07.
  • Miyamoto N, Uchiyama H, Matsuoka T et al. Development of fuel debris canister (15) Effect of alpha-rays on hydrogen production using spent fuel (Part 2). Proc. Fall Meetings of Atomic Energy Society of Japan; 2019 Sept. 11–13; Toyama, Japan, 3C15.
  • Miller WH. Dosimetry modeling for predicting radiolytic production at the spent fuel-water interface. United States: N; 2006. doi:10.2172/884898.
  • Hansson NL, Ekberg C, Spahiu K. Alpha dose rate calculation for UO2 based materials using stopping power models. Nucl Mater Energies. 2020;22:100734. doi: 10.1016/j.nme.2020.100734
  • ATIMA[Internet]. Germany: Weick H. 2021 [cited 2021 Nov 28]. Available from: http://web-docs.gsi.de/~weick/atima/.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.