208
Views
0
CrossRef citations to date
0
Altmetric
Articles

Application of neutron current method for Dancoff factor estimation of fuel particles in double-heterogeneous fuel

ORCID Icon & ORCID Icon
Pages 354-362 | Received 22 Apr 2023, Accepted 26 Jun 2023, Published online: 16 Jul 2023

References

  • Murata I, Mori T, Nakagawa M. Continuous energy monte carlo calculations of randomly distributed spherical fuels in high-temperature gas-cooled reactors based on a statistical geometry model. Nucl Sci Eng. 1996;123(1):96–109. doi: 10.13182/NSE96-A24215
  • Tsuchihashi K, Ishiguro Y, Kaneko K. Double heterogeneity effect on resonance absorption in very high temperature gas-cooled reactor. J Nucl Sci Technol. 1985;22(1):16–27. doi: 10.1080/18811248.1985.9735620
  • She D, Liu Z, Shi L. An equivalent homogenization method for treating the stochastic media. Nucl Sci Eng. 2017;185(2):351–360. doi: 10.1080/00295639.2016.1272363
  • Singh I, Degweker SB, Gupta A. A new collision probability approach for solution of the transport equation in the random medium of high-plutonium-content HTR Lattice Cells. Nucl Sci Eng. 2018;189(2):101–119. doi: 10.1080/00295639.2017.1388092
  • Kim Y, Kim K, Noh M. Preservation of Fuel Characteristics in the RPT Method. Chuncheon, Korea: Spring Meeting; 2006 May 25-26. Trans. Korean Nuclear Society
  • Lou L, Yao D, Chai X, et al. A novel reactivity-equivalent physical transformation method for homogenization of double-heterogeneous systems. Ann Nucl Energy. 2020;142:107396. DOI:10.1016/j.anucene.2020.107396
  • Lou L, Chai X, Yao D, et al. Research of ring RPT method on spherical and cylindrical Double-Heterogeneous systems. Ann Nucl Energy. 2020;147:107741. DOI:10.1016/j.anucene.2020.107741
  • Sanchez R, Masiello E. Treatment of the double heterogeneity with the method of characteristics. Proc PHYSOR. 2002; 2002 Oct 6-11. Seoul, Korea. [CD-ROM].
  • Sanchez R. Renormalized treatment of the double heterogeneity with the method of characteristics. Proc PHYSOR. 2004; 2004 Apr 25-29. Chicago, Illinois. [CD-ROM].
  • Joo H, Park T. Derivation of Analytic Solution and MOC Calculation Procedure for Double Heterogeneity Treatment. SNURPL-SR-001(07): Seoul National University, 2007.
  • Williams ML, Choi S, Lee D. A New Equivalence Theory Method for Treating Doubly Heterogeneous Fuel—I: Theory. Nucl Sci Eng. 2015;180(1):30–40. doi: 10.13182/NSE14-68
  • Yin W, Zu T, He Q, et al. Multi-group effective cross section calculation method for Fully Ceramic Micro-encapsulated fuel. Ann Nucl Energy. 2019;125:26–37. DOI:10.1016/j.anucene.2018.10.047
  • Kondo R, Endo T, Yamamoto A, et al. A New Resonance Calculation Method Using Energy Expansion Based on a Reduced Order Model. Nucl Sci Eng. 2021;195(7):694–716. doi: 10.1080/00295639.2020.1863066
  • Yamamoto A. A New Approach for Resonance Treatment of Doubly Heterogeneous Fuel Using the RSE Method; Proc. International Conference on Physics of Reactors 2022 (PHYSOR 2022); 2022 May 15-20; Pittsburgh, PA; 2042–2051.
  • Segev M. An Equivalence Relation for a Doubly Heterogenous Lattice. Nucl Sci Eng. 1982;81(2):151–160. doi: 10.13182/NSE82-A20082
  • Talamo A. Analytical Calculation of the Average Dancoff Factor for Prismatic High-Temperature Reactors. Nucl Sci Eng. 2007;156(3):343–356. doi: 10.13182/NSE07-A2704
  • She D, Liu Z, Shi L. XPZ: Development of a lattice code for HTR. Ann Nucl Energy. 2016;97:183–189. doi: 10.1016/j.anucene.2016.07.017
  • Kim H, Choi S, Park M, et al. Extension of double heterogeneity treatment method for coated TRISO fuel particles. Ann Nucl Energy. 2017;99:124–135. DOI:10.1016/j.anucene.2016.07.026
  • Yamamoto A, Endo T. Application of equivalent dancoff factor method for resonance calculation of double heterogeneous fuel. Illinois: American Nuclear Society. Trans. 2023 ANS Annual MeetingIndianapolis, IN; 2023 June 11-14
  • Bende EE, Hogenbirk AH, Kloosterman JL, et al. Analytical calculation of the average dancoff factor for a fuel kernel in a pebble bed high-temperature reactor. Nucl Sci Eng. 1999;133(2):147–162. doi: 10.13182/NSE99-A2078
  • Ji W, Martin WR. Application of the chord method to obtain analytical expressions for dancoff factors in stochastic media. Nucl Sci Eng. 2011;169(1):19–39. doi: 10.13182/NSE10-73
  • Singh I, Degweker SB, Gupta A. Treatment of double heterogeneity in the resonance and thermal energy regions in high-temperature reactors. Nucl Sci Eng. 2018;189(3):243–258. doi: 10.1080/00295639.2017.1402568
  • In: Cacuci DGeditor. Handbook of Nuclear Engineering. In: Chap 9Vol. 2 Springer: New York; 2010. 10.1007/978-0-387-98149-9
  • Sugimura N, Yamamoto A. Evaluation of dancoff factors in complicated geometry using the method of characteristics. J Nucl Sci Technol. 2006;43(10):1182–1187. doi: 10.1080/18811248.2006.9711210
  • Yamamoto A, Endo T, Takeda S et al., Application of the RSE Method for the Resonance Treatment of HTGR Fuel with Double Heterogeneity. Proc M&C2023. Niagara Falls, Ontario, Canada. [Submitted]. [2023 Aug. 13-17];
  • Yamamoto A, Endo T, Takeda S et al. A deterministic transport calculation method based on statistical geometry model for double heterogeneous Fuels. Nucl Sci Eng. [24 June]; accepted.
  • Global Nuclear Fuel-Americas, LLC. LANCR02 lattice physics model description. NEDO-33376-A Revision 3 2016.
  • Hébert A. A consistent technique for the pin-by-pin homogenization of a pressurized water reactor assembly. Nucl Sci Eng. 1993;113(3):227–238. doi: 10.13182/NSE92-10
  • Saito S. Design of High Temperature Engineering Test Reactor (HTTR). JAERI-1332. Japan Atomic Energy Research Institute; 1994.
  • Nagaya Y, Okumura K, Sakurai T et al. MVP/GMVP version 3: General purpose monte carlo codes for neutron and photon transport calculations based on continuous energy and multigroup methods. Japan Atomic Energy Agency. 2017;JAEA-Data/Code 2016–018.
  • Yamamoto A, Giho A, Kato Y, et al. GENESIS: A three-dimensional heterogeneous transport solver based on the legendre polynomial expansion of angular flux method. Nucl Sci Eng. 2017;186(1):1–22. doi: 10.1080/00295639.2016.1273002
  • Tada K, Nagaya Y, Kunieda S, et al. Development and verification of a new nuclear data processing system FRENDY. J Nucl Sci Technol. 2017;54(7):806–817. doi: 10.1080/00223131.2017.1309306
  • Yamamoto A, Tada K, Chiba G, et al. Multi-group neutron cross section generation capability for FRENDY nuclear data processing code. J Nucl Sci Technol. 2021;58(11):1165–1183. doi: 10.1080/00223131.2021.1921631
  • Iwamoto O, Iwamoto N, Kunieda S, et al. Japanese evaluated nuclear data library version 5: JENDL-5. J Nucl Sci Technol. 2023;60(1):1–60. doi: 10.1080/00223131.2022.2141903
  • Hebert A, Santamarina A. Refinement of the Santamarina-Hfaiedh energy mesh between 22.5 eV and 11.4 keV. Proc PHYSOR. Interlaken, Switzerland, 2008 [2008 Sep 14-19]. 929–938.
  • Yamamoto A, Kitamura Y, Yamane Y. Simplified Treatments of Anisotropic Scattering in LWR Core Calculations. J Nucl Sci Technol. 2008;45(3):217–229. doi: 10.1080/18811248.2008.9711430

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.