261
Views
0
CrossRef citations to date
0
Altmetric
Articles

Deterministic sampling method using simplex ensemble and scaling method for efficient and robust uncertainty quantification

ORCID Icon, ORCID Icon & ORCID Icon
Pages 363-374 | Received 08 May 2023, Accepted 28 Jun 2023, Published online: 30 Jul 2023

References

  • Kiedrowski BC, Brown FB, Conlin JL, et al. Whisper: sensitivity/uncertainty-based computational methods and software for determining baseline upper subcritical limits. Nucl Sci Eng. 2015;181(1):17–47. doi: 10.13182/NSE14-99
  • Hayashi T, Endo T, Yamamoto A. Proposal and applicability of estimated criticality lower-limit multiplication factor using the bootstrap method. J Nucl Sci Technol. 2021;58(9):1008–1017. doi: 10.1080/00223131.2021.1902416
  • Koning AJ, Rochman D. Towards sustainable nuclear energy: putting nuclear physics to work. Ann Nucl Energy. 2008;35(11):2024–2030. doi: 10.1016/j.anucene.2008.06.004
  • Williams ML, Ilas G, Jessee MA, et al. A Statistical sampling method for uncertainty analysis with SCALE and XSUSA. Nucl Technol. 2013;183(3):515–526. doi: 10.13182/NT12-112
  • Yamamoto A, Kinoshita K, Watanabe T, et al. Uncertainty quantification of LWR core characteristics using random sampling method. Nucl Sci Eng. 2015;181(2):160–174. doi: 10.13182/NSE14-152
  • Kida T, Chiba G. Enhancement of applicability of high-efficiency random sampling method using control variates method and sensitivity coefficients. J Nucl Sci Technol. 2022;59(7):866–874. doi: 10.1080/00223131.2021.2015473
  • Wieselquist WA, Lefebvre RA, Jessee MA, editors. SCALE code system. ORNL/TM2005/39, Version 6.2.4. . ORNL/TM2005/39, Version 6.2.4. Oak Ridge (TN): Oak Ridge National Laboratory; 2020.
  • Hara A, Takeda T, Kikuchi Y. SAGEP: two-dimensional sensitivity analysis code based on generalized perturbation theory. JAERI-M 84-027. Ibaraki (Japan): Japan Atomic Energy Agency; 1984.
  • Favorite JA, Perkó Z, Kiedrowski BC, et al. Adjoint-based sensitivity and uncertainty analysis for density and composition: a user’s guide. Nucl Sci Eng. 2017;185(3):384–405. doi: 10.1080/00295639.2016.1272990
  • Aufiero M, Bidaud A, Hursin M, et al. A collision history-based approach to sensitivity/perturbation calculations in the continuous energy Monte Carlo code SERPENT. Ann Nucl Energy. 2015;85:245–258. doi: 10.1016/j.anucene.2015.05.008
  • Kodeli IA. Sensitivity and uncertainty in the effective delayed neutron fraction (βeff). Nucl Inst Meth Phys Res A. 2013;715:70–78. doi: 10.1016/j.nima.2013.03.020
  • Endo T, Yamamoto A. Sensitivity analysis of prompt neutron decay constant using perturbation theory. J Nucl Sci Technol. 2018;55(11):1245–1254. doi: 10.1080/00223131.2018.1491902
  • Endo T, Noguchi A, Yamamoto A, et al. Perturbation-theory-based sensitivity analysis of prompt neutron decay constant for water-only system. Tran Am Nucl Soc. 2021;124(1):184–187.
  • Chiba G, Tsuji M, Narabayashi T. Sensitivity and uncertainty analysis for reactor stable period induced by positive reactivity using one-point adjoint kinetics equation. J Nucl Sci Technol. 2013;50(12):1150–1160. doi: 10.1080/00223131.2013.838332
  • Chiba G, Kawamoto Y, Narabayashi T. Development of a fuel depletion sensitivity calculation module for multi-cell problems in a deterministic reactor physics code system CBZ. Ann Nucl Energy. 2016;96:313–323. doi: 10.1016/j.anucene.2016.06.013
  • Endo T, Watanabe T, Yamamoto A. Confidence interval estimation by bootstrap method for uncertainty quantification using random sampling method. J Nucl Sci Technol. 2015;52(7–8):993–999. doi: 10.1080/00223131.2015.1034216
  • Final report of the covariance data utilization and promotion WG in the JENDL committee. Ibaraki (Japan): Japan Atomic Energy Agency; 2021. JAEA-Review 2021-014.
  • Lahaye S, de Saint Jean C. Choice of positive distribution law for nuclear data. EPJ Nucl Sci Technol. 2018;4:38. doi: 10.1051/epjn/2018047
  • Žerovnik G, Trkov A, Smith DL, et al. Transformation of correlation coefficients between normal and lognormal distribution and implications for nuclear applications. Nucl Inst Meth Phys Res A. 2013;727:33–39. doi: 10.1016/j.nima.2013.06.025
  • Hessling JP. Deterministic sampling for propagating model covariance. Siam/Asa J Uq. 2013;1(1):297–318. doi: 10.1137/120899133
  • Fedon C, Cervantes EYG, Salamon L, et al. Application of deterministic sampling methods for uncertainty quantification in manufacturing tolerances in neutron physics. Nucl Eng Des. 2021;373:111023. doi: 10.1016/j.nucengdes.2020.111023
  • Garcia Cervantes EY, Erasmus B, van der Marck S, et al. Quantification of uncertainties due to manufacturing tolerances using deterministic sampling methods. Nucl Eng Des. 2021;382:111399. doi: 10.1016/j.nucengdes.2021.111399
  • Fukui Y, Endo T, Yamamoto A. Nuclear data adjustment using a deterministic sampling method with unscented transformation. J Nucl Sci Technol. 2023;60(3):238–250. doi: 10.1080/00223131.2022.2095051
  • Ivanov K, Avramova M, Kamerow S, et al. Benchmarks for uncertainty analysis in modelling (UAM) for the design, operation and safety analysis of LWRs, volume I: specification and support data for neutronics cases (phase I). Paris (France): OECD NEA;2013. NEA/NSC/DOC(2013)7.
  • Stewart GW. Matrix algorithms: volume 1: basic decompositions. Philadelphia (PA): SIAM; 1998. doi:10.1137/1.9781611971408
  • Zwillinger D, Kokoska S. CRC standard probability and statistics tables and formulae. Boca Raton (FL): Chapman & Hall/CRC; 2000. doi:10.1201/9780367802417
  • Chiba G, Kawamoto Y, Tsuji M, et al. Estimation of neutronics parameter sensitivity to nuclear data in random sampling-based uncertainty quantification calculations. Ann Nucl Energy. 2015;75:395–403. doi: 10.1016/j.anucene.2014.08.049
  • Watanabe T, Endo T, Yamamoto A, et al. Cross section adjustment method based on random sampling technique. J Nucl Sci Technol. 2014;51(5):590–599. doi: 10.1080/00223131.2014.882801
  • Hoefer A, Buss O, Hennebach M, et al. MOCABA: A general Monte Carlo–Bayes procedure for improved predictions of integral functions of nuclear data. Ann Nucl Energy. 2015;77:514–521. doi: 10.1016/j.anucene.2014.11.038
  • Endo T, Yamamoto A, Watanabe T. Bias factor method using random sampling technique. J Nucl Sci Technol. 2016;53(10):1494–1501. doi: 10.1080/00223131.2015.1126541
  • Goorley T, James M, Booth T, et al. Features of MCNP6. Ann Nucl Energy. 2016;87(2):772–783. doi: 10.1016/j.anucene.2015.02.020
  • Rearden BT, Petrie LM, Peplow DE, et al. Monte Carlo capabilities of the SCALE code system. Ann Nucl Energy. 2015;82:130–141. doi: 10.1016/j.anucene.2014.08.019
  • Leppänen J, Pusa M, Viitanen T, et al. The Serpent Monte Carlo code: status, development and applications in 2013. Ann Nucl Energy. 2015;82:142–150. doi: 10.1016/j.anucene.2014.08.024
  • Jessee MA, Wieselquist WA, Mertyurek U, et al. Lattice physics calculations using the embedded self-shielding method in Polaris, part I: methods and implementation. Ann Nucl Energy. 2021;150:107830. doi: 10.1016/j.anucene.2020.107830
  • Chadwick MB, Herman M, Obložinský P, et al. ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl Data Sheets. 2011;112(12):2887–2996. doi: 10.1016/j.nds.2011.11.002
  • Pusa M. Rational approximations to the matrix exponential in burnup calculations. Nucl Sci Eng. 2011;169(2):155–167. doi: 10.13182/NSE10-81
  • Efron B. Bootstrap methods: another look at the Jackknife. Ann Stat. 1979;7(1):1–26. doi: 10.1214/aos/1176344552
  • Noguere G, Scotta JP, De Saint Jean C, et al. Covariance matrices of the hydrogen neutron cross sections bound in light water for the JEFF-3.1.1 neutron library. Ann Nucl Energy. 2017;104:132–145. doi: 10.1016/j.anucene.2017.01.044
  • Rochman D, Hursin M, Vasiliev A, et al. Impact of H in H2O thermal scattering data on depletion calculation: k∞, nuclide inventory and decay heat. EPJ Nucl Sci Technol. 2021;7:24. doi: 10.1051/epjn/2021027
  • Rochman D, Vasiliev A, Ferroukhi H, et al. Impact of H in H2O thermal scattering data on criticality calculation: uncertainty and adjustment. EPJ Nucl Sci Technol. 2022;8:3. doi: 10.1051/epjn/2021028

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.