210
Views
1
CrossRef citations to date
0
Altmetric
Articles

Behaviors of actinides in chromatographic separation by using TBP resin in nitric acid solution and hydrochloric acid solution

, , , &
Pages 375-383 | Received 27 Jan 2023, Accepted 27 Jun 2023, Published online: 07 Jul 2023

References

  • Che Abd Rahim M, Shafie A. Natural thorium isotopes level in marine sediments of coal-fired power plant. Costal Mar Sci. 2010;34:172–180.
  • Paul S, PK A, Shah RV. Superparamagnetic bi-functional composite bead for the thermal ionization mass spectrometry of plutonium(iv) ions. RSC Adv. 2016;6(4):3326–3334. doi: 10.1039/C5RA18419C
  • Bouvier-Capely C, Ritt J, Baglan N et al. Potentialities of Mass Spectrometery (ICPMS) for actinides determination in urine. Appl Radiat Isot. 2004;60(5):629–633. doi: 10.1016/j.apradiso.2004.01.007
  • Rodushkin I, Engstrom E. Isotopic analyses by ICP-MS in clinical samples. Anal Bioanal Chem. 2013;405(9):2786–2797. doi: 10.1007/s00216-012-6457-x
  • Croudace IW, Russell BC, Warwick PW. Plasma source mass spectrometry for radioactive waste characterisation in support of nuclear deccomissioning: a review. J. Anal. At. Spectrom. 2017;32(3):494–526. doi: 10.1039/C6JA00334F
  • Pointurier F, Baglan N, Hemet P. Ultra low-level measurement of actinides by sector field ICPM-MS. Appl Radiat Isot. 2004;60(2–4):561–566. doi: 10.1016/j.apradiso.2003.11.083
  • Kurata M, Okuzumi N, Nakayoshi A, et al. Step-by-step challenge of debris characterization for the decommissioning of Fukushima-Daiichi Nuclear Power Station (FDNPS). J Nucl Sci Technol. 2022;59(7):807–834. doi: 10.1080/00223131.2022.2040393
  • Sumana P, Ashok PK, Shah RV et al. Superparamagnetic bi-functional composite bead for the thermal ionization mass spectrometry of plutonium (IV) ions. Royal Soc Chem. 2016;6(4):3326–3334. doi: 10.1039/C5RA18419C
  • Suzuki T, Yamamura T, Abe C et al. Actinides molecular ion formation in collision/reaction cell of triple quadrapole ICP-Ms/Ms and its application to quantitative actinide analysis. J Radioanal Nucl Chem. 2018;318(1):221–225. doi: 10.1007/s10967-018-6095-7
  • Betti M. Use of ion chromatography for the determination of fission product and actindes in nuclear applications. J Chromatogr A. 1997;789(1–2):369–379. doi: 10.1016/S0021-9673(97)00784-X
  • Chartier F, Aubert M, Pilier M. Determination of Am and Cm in spent nuclear fuels by isotope dilution inductively coupled plasma mass spectrometry and isotope dilution thermal ionization mass spectrometry after separation by high-performance liquid chromatoraphy. Fresenius J Anal Chem. 1999;364(4):320–327. doi: 10.1007/s002160051343
  • Watanabe K. Extraction of thorium and uranium from chloride solutions by Tri-n-Butyl phosphate and Tri-n-Octyl phosphine oxide. J Nucl Sci Technol. 2012;1(5):155–162. doi: 10.1080/18811248.1964.9732101
  • Shimada A, Tsukahara T, Nomura M, et al. Determination of 135Cs/137Cs isotopic ratio in soil collected near Fukushima Daiichi nuclear power station through mass spectrometry. J Nucl Sci Technol. 2021;58(11):1184–1194. doi: 10.1080/00223131.2021.1931520
  • Glatz HJ, Bokelund S, Valkiers S. Separation of fission products, nitric acid plutonium and uranium by extraction chromatography with TBP-polystyrene. Inorganica Chimica Acta. 1898;94(1–3):129–131. doi: 10.1016/S0020-1693(00)94595-X
  • Dirks C, Vajda N, Kovács-Széles, E, Bombard, A, Happel, S. Characterization of a TBP Resin and development of methods for the separation of actinides and the purification of Sn. Poster presented at the 17th Radiochemistry conference; 2014 May 11–16;Marianske Lazne (Tcheque Republic). 1997.
  • Peppard DF, Mason GW, Gergel MV. The mutual separation of thorium, protoactinium, and uranium y tributyl phosphate extraction from hydrochloride acid. J. Inorg. Nucl.Chem. 1957;3(6):370–378. doi: 10.1016/0022-1902(57)80044-X
  • Yin D, Liang Y, Miao Z et al. Separation of gram quantities of uranium from fission products by extarcting chromatography. J Radioanal Nucl Chem. 2002;254(3):629–631. doi: 10.1023/A:1021675029335
  • Orabi A. Determination of uranium after separation using solvent extraction from slightly nitric acid solution and spectrophotometic detection. J Radiat Res Appl Sci. 2002;6(2):1–10. doi: 10.1016/j.jrras.2013.09.001
  • Sato T. The extraction of uranyl nitarte from nitric acid solution by tributyl phospate. J Inorg Nucl Chem. 1958;6(4):334–337. doi: 10.1016/0022-1902(58)80117-7
  • Patil SK, Ramakrishna VV, Avadhany GVN et al. Some studies on the TBP extraction of actinides. J Inorg Nucl Chem. 1972;35(7):2537–2545. doi: 10.1016/0022-1902(73)80321-5
  • Lanham WB, Runion TC. PUREX Process for Plutonium and Uranium Recovery. United States: OAK Ridge National Laboratory; 1949. doi:10.2172/4165457
  • Irish ER, Reas WH. The purex process: a solvent extraction reprocessing method for irradiated uranium. United States: Hanford Atomic Products Operation; 1957. doi:10.2172/4341712
  • Cleveland JM. The Chemistry of Plutonium. Illinois, United States: American Nuclear Society; 1979.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.