195
Views
2
CrossRef citations to date
0
Altmetric
Articles

Integrating DeblurGAN and CNN to improve the accuracy of motion blur X-Ray image classification

&
Pages 403-416 | Received 12 Feb 2023, Accepted 08 Jul 2023, Published online: 20 Jul 2023

References

  • Jankovic J. Parkinson’s disease: Clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008; 79(4):368–376. doi: 10.1136/jnnp.2007.131045
  • Krizhevsky BA, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60(6):84–90. [Online]. Available. doi: 10.1145/3065386
  • Demachi K, Hori T, Perrin S. Crack depth estimation of non-magnetic material by convolutional neural network analysis of eddy current testing signal. J Nucl Sci Technol. 2020; 57(4):401–407. doi: 10.1080/00223131.2019.1691076
  • Zhang B, Miao Y, Tian Y, et al. Implementation of surface crack detection method for nuclear fuel pellets guided by convolution neural network. J Nucl Sci Technol. 2021;58(7):787–796. doi: 10.1080/00223131.2020.1869622
  • Chiu MC, Lee YH, Chen TM. Integrating content-based image retrieval and deep learning to improve wafer bin map defect patterns classification. J Ind Prod Eng Nov. 2022; 39(8.):614–628. doi: 10.1080/21681015.2022.2074155
  • Chiu MC, Tu YL, Kao MC. Applying deep learning image recognition technology to promote environmentally sustainable behavior. Sustain Prod Consum. 2022;31(31):736–749. doi: 10.1016/j.spc.2022.03.031
  • Barbedo JGA. Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification. Comput Electron Agric. 2018; 153(August):46–53. doi: 10.1016/j.compag.2018.08.013
  • Chiu MC, Chen TM. Applying data augmentation and mask R-CNN-based instance segmentation method for mixed-type wafer maps defect patterns classification. IEEE Trans Semicond Manuf. 2021; 34(4):455–463. doi: 10.1109/TSM.2021.3118922
  • Yuan Z, Xue D, Yang H, et al. A novel Compton camera with an annular absorber for enhancing the imaging efficiency in regions directly ahead: A simulation study. J Nucl Sci Technol. 2023;1–11.
  • Shikaze Y, Nishizawa Y, Sanada Y, et al. Field test around Fukushima Daiichi nuclear power plant site using improved Ce: Gd3(Al,Ga)5O12 scintillator Compton camera mounted on an unmanned helicopter. J Nucl Sci Technol. 2016;53(12.):1907–1918. doi: 10.1080/00223131.2016.1185980
  • Svoboda P, Hradiš M, Maršík L, et al. CNN for license plate motion deblurring. IEEE Int. Conf. Image Process, Phoenix, Arizona, USA; 2016. pp.3832–3836. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7532298
  • Hradiš M, Kotera J, Zemčík P, et al. Convolutional neural networks for direct text deblurring. Proc BMVC. 2015;(1):.6.1–.6.13. doi: 10.5244/C.29.6
  • Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Commun ACM. 2014;63(11):139–144. doi: 10.1145/3422622
  • Tien HJ, Yang HC, Shueng PW, et al. Cone‑beam CT image quality improvement using Cycle‑Deblur consistent adversarial networks (Cycle‑Deblur GAN) for chest CT imaging in breast cancer patients. Sci Rep. 2021;11(1):1133. doi: 10.1038/s41598-020-80803-2
  • Hu Z, Jiang C, Sun F, et al. Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks.Med. Phys. 2019;46(4):1686–1696. doi: 10.1002/mp.13415
  • Kupyn O, Budzan V, Mykhailych M, et al. DeblurGAN: blind motion deblurring using conditional adversarial networks. Proc. IEEE Conf. Comput. Vis. pattern Recognit. 2018.pp. 8183–8192, doi: 10.1016/j.sigpro.2019.107338.
  • Liu X, Peng W, Zhang B, et al. A surface cracks detection method for nuclear fuel pellets using an improved fully convolutional network. J Nucl Sci Technol. 2022;59(5):555–563. doi: 10.1080/00223131.2021.1987347
  • Torisaki S, Miwa S. Robust bubble feature extraction in gas-liquid two-phase flow using object detection technique. J Nucl Sci Technol. 2020; 57(11):1231–1244. doi: 10.1080/00223131.2020.1779145
  • Ghassemi N, Shoeibi A, Rouhani M. Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR images. Biomedical Signal Processing And Control. 2020;57:101678. doi: 10.1016/j.bspc.2019.101678
  • Huang Y, Han L, Dou H, et al. Two-stage CNNs for computerized BI-RADS categorization in breast ultrasound images. Biomed Eng Online. 2019;18(1):1–18. doi: 10.1186/s12938-019-0626-5
  • Monkam P, Qi S, Xu M, et al. CNN models discriminating between pulmonary micro-nodules and non-nodules from CT images. Biomed Eng Online. 2018;17(1):1–16. doi: 10.1186/s12938-018-0529-x
  • Xu X, Guan Y, Li J, et al. Automatic glaucoma detection based on transfer induced attention network. Biomed Eng Online. 2021;20(1):39. doi: 10.1186/s12938-021-00877-5
  • Sajjad M, Khan S, Muhammad K, et al. Multi-grade brain tumor classification using deep CNN with extensive data augmentation. J Comput Sci. 2019;30(December):174–182. doi: 10.1016/j.jocs.2018.12.003
  • Chouhan V, Singh SK, Khamparia A, et al. A novel transfer learning based approach for pneumonia detection in chest X-ray images. Appl Sci. 2020;10(2):559. doi: 10.3390/app10020559
  • Rajaraman S, Candemir S, Kim I, et al. Visualization and interpretation of convolutional neural network predictions in detecting pneumonia in pediatric chest radiographs. Appl Sci. 2018;8(10):1715. doi: 10.3390/app8101715
  • Gu X, Pan L, Liang H, et al. Classification of bacterial and viral childhood pneumonia using deep learning in chest radiography. Proc 3rd Int Conf Multimed Image Process. 2018:88–93. doi: 10.1145/3195588.3195597
  • Guo J, Wu Y, Chen L, et al. A perspective on the diagnosis of cracked tooth: imaging modalities evolve to AI‑based analysis. Biomed Eng Online. 2022;21(1):1–22. doi: 10.1186/s12938-022-01008-4
  • deSouza LA, Passos LA, Mendel R, et al. Assisting Barrett’s esophagus identification using endoscopic data augmentation based on generative adversarial networks. Comput Biol Med. 2020;126:104029. doi: 10.1016/j.compbiomed.2020.104029
  • Luo J, Huang J. Generative adversarial network: An overview. IEEE Signal Process Mag. 2019; 40(3):74–84. doi: 10.19650/j.cnki.cjsi.J1804413
  • Singh MK, Tiwary US, Kim YH. An adaptively accelerated Lucy-Richardson method for image deblurring. EURASIP J Adv Signal Process. 2008;2008(1):1–10. doi: 10.1155/2008/365021
  • Fergus R, Singh B, Hertzmann A, et al. Removing camera shake from a single photograph. Acm Siggraph 2006 Pap. 2006;1(212):787–794. doi: 10.1145/1179352.1141956
  • Liu Y, Dong W, Gong D, et al. Deblurring natural image using super-gaussian fields. Proc Eur Conf Comput Vis. 2018:452–468. doi: 10.1007/978-3-030-01246-5_28
  • Xu L, Zheng S, Jia J. Unnatural L0 sparse representation for natural image deblurring. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2013. pp. 1107–1114, doi: 10.1109/CVPR.2013.147.
  • Brock A, Donahue J, Simonyan K. Large scale GaN training for high fidelity natural image synthesis. 7th Int Conf Learn Represent ICLR. 2019;2019:1–35.
  • Karras T, Aila T, Laine S, et al. Progressive growing of GANs for improved quality, stability, and variation. 6th Int Conf Learn Represent ICLR 2018 - Conf Track Proc. 2018;1–26. https://openreview.net/forum?id=Hk99zCeAb
  • Chang H, Lu J, Yu F, et al. PairedCycleGAN: Asymmetric style transfer for applying and removing makeup. Proc IEEE Conf. Comput. Vis. pattern Recognit.2018. pp. 40–48, doi: 10.1109/CVPR.2018.00012.
  • Mahalingaiah K, Matichuk B. ProDeblurGAN: Progressive growing of GANs for blind motion deblurring in face recognition. Int Conf Smart Multimed. 2020;439–450. doi: 10.1007/978-3-030-54407-2_37
  • Zhou L, Min W, Lin D, et al. Detecting motion blurred vehicle logo in iov using filter-DeblurGAN and VL-YOLO. IEEE Trans Veh Technol. 2020;69(4):3604–3614. doi: 10.1109/TVT.2020.2969427
  • Gong Y, Li Y, Zhu H. Restoration algorithm of blurred UAV aerial image based on generative adversarial network. Chinese Control Conf CCC. 2021; 2021(July):7201–7206. doi: 10.23919/CCC52363.2021.9549602
  • Ulyanov D, Vedaldi A, Lempitsky V. Instance normalization: The missing ingredient for fast stylization. arXiv Prepr. 2016, [Online]. Available: http://arxiv.org/abs/1607.08022
  • Agarap AF Deep learning using rectified linear units (ReLU). arXiv Prepr. 2018, [Online]. Available: http://arxiv.org/abs/1803.08375
  • Demir U, Unal G. Patch-based image inpainting with generative adversarial networks. arXiv Prepr. 2018, [Online]. Available: http://arxiv.org/abs/1803.07422
  • Johnson J, Alahi A, Fei-Fei L. Perceptual losses for real-time style transfer and super-resolution. Eur Conf Comput Vis. 2016;9906:694–711. https://link.springer.com/chapter/10.1007/978-3-319-46475-6_43
  • Sanakoyeu A, Kotovenko D, Lang S, et al. A style-aware content loss for real-time HD style transfer. Proc Eur Conf Comput Vision(eccv). 2018:698–714. doi: 10.1007/978-3-030-01237-3_43
  • Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision. Proc. IEEE Conf. Comput. Vis. pattern Recognit. 2016. pp. 2818–2826, doi: 10.1109/CVPR.2016.308.
  • Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Int Conf Mach Learn. 2015;37:448–456. http://proceedings.mlr.press/v37/ioffe15.html
  • Kermany DS, Goldbaum M, Cai W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell Feb. 2018;172(5):1122–1131.e9. doi: 10.1016/j.cell.2018.02.010
  • Cho NS, Kim CS, Park C, et al. GAN-Based blur restoration for finger wrinkle biometrics system. IEEE Access. 2020;8: 49857–49872. doi: 10.1109/ACCESS.2020.2980568
  • Ye D, Zhong S, Zhuang J, et al. Method for removing motion blur from images of harmful biological organisms in power places based on improved cyclegan. Pervasive Health Pervasive Comput Technol Healthc. 2019:92–97. doi: 10.1145/3372806.3372820
  • Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network. Cvpr. 2017;2(3):4.
  • Zhang R, Isola P, Efros AA, et al. The unreasonable effectiveness of deep features as a perceptual metric. Proc IEEE Conf Comput Vis Pattern Recognit. 2018;(1):586–595. doi:10.1109/CVPR.2018.00068
  • Blau Y, Michaeli T, Israel T. The perception-distortion tradeoff. Proc. IEEE Conf. Comput. Vis. pattern Recognit, Long Beach, CA, USA. 2019.pp. 6228–6237. https://www.computer.org/csdl/proceedings/cvpr/2019/1gyr6w5YIIU
  • Bansal R, Raj G, Choudhury T. Blur image detection using Laplacian operator and Open-CV.2016. Int Conf Syst Model Adv Res Trends. 2016;63–67. doi: 10.1109/SYSMART.2016.7894491
  • Minami Y, Imamura R, Kanno I, et al. Using X-ray Energy Information in CT Measurement of a Phantom with an Al Region Using X-ray Energy Information in CT Measurement. J Nucl Sci Technol. 2012;48(1):108–112. doi: 10.1080/18811248.2011.9711684
  • Mayer J, Brown R. Projection-based motion compensation for gated coronary artery reconstruction from rotational x-ray angiograms. Phys Med Biol. 2008; 53(14):3807. doi: 10.1088/0031-9155/53/14/007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.