864
Views
1
CrossRef citations to date
0
Altmetric
Article

Uncertainty reduction of sodium void reactivity using data from a sodium shielding experiment

ORCID Icon, ORCID Icon & ORCID Icon
Pages 31-43 | Received 22 Jun 2023, Accepted 28 Jul 2023, Published online: 13 Sep 2023

References

  • Yokoyama K, Sugino K, Ishikawa M, et al. Development of the unified cross-section set ADJ2017. JAEA-Research 2018-11. Tokai-mura (Japan):Japan Atomic Energy Agency; 2019. doi: 10.11484/jaea-research-2018-011
  • Yokoyama K, Maruyama S, Taninaka H, et al. Development of the unified cross-section set ADJ2017R. JAEA-Data/Code 2021-019. Tokai-mura (Japan): Japan Atomic Energy Agency; 2022. doi: 10.11484/jaea-data-code-2021-019
  • Yokoyama K. Development of adjusted nuclear data library for fast reactor application. EPJ Web Conference. 2023;281:00004. doi: 10.1051/epjconf/202328100004
  • Maerker RE, Muckenthaler FJ, Childs RL, et al. Final report on a benchmark experiment for neutron transport in thick sodium. ORNL-4880. Oak Ridge (Tennessee): Oak Ridge National Laboratory; 1974. doi: 10.2172/4333466
  • Maerker RE, Muckenthaler FJ, Childs RL, et al. The ORNL benchmark experiment for neutron transport in thick sodium. Nucl Technol. 1973;22(2):275–297. doi: 10.13182/NT74-A31409
  • Kodeli I. Multidimensional deterministic nuclear data sensitivity and uncertainty code system: Method and application. Nucl Sci Eng. 2001;138:45–66. doi: 10.13182/NSE00-43
  • Kodeli IA, Enrico S. SINBAD – radiation shielding benchmark experiments. Ann Nuc Energy. 2021;159:108254. doi: 10.1016/j.anucene.2021.108254
  • Hara A, Takeda T, Kikuchi Y. SAGEP: two-dimensional sensitivity analysis code based on generalized perturbation theory. JAERI-M 84-027. Tokai-mura (Japan): Japan Atomic Energy Research Institute; 1984. doi: 10.11484/jaeri-m-84-027
  • Bell GI, Glasstone S. Nuclear reactor theory. MALABAR (FL): ROBERT E. KRIEGER PUBLISHING CO., INC; 1970. pp. 237–242.
  • Lathrop KD. Ray effects in discrete ordinates equations. Nucl Sci Eng. 1968;32(3):357–369. doi: 10.13182/NSE68-4
  • Masukawa F, Kadotani H, Hoshiai H, et al. GRTUNCL-3D: an extension of the GRTUNCL code to compute R-θ-Z first collision source moments. J Nucl Sci Technol. 2000;37(1):471–474. doi: 10.1080/00223131.2000.10874930
  • Kosako K, Konno C. FNSUNCL3: first collision source code for TORT. J Nucl Sci Technol. 2000;37(1):475–478. doi: 10.1080/00223131.2000.10874931
  • Alcouffe RE, O’Dell RD, Brinkley Jr FW. A first-collision source method that satisfies discrete sn transport balance. Nucl Sci Eng. 1990;105(2):198–203. doi: 10.13182/NSE90-A23749
  • Takeda T, Yoshimura A, Kamei T. Prediction uncertainty evaluation methods of core performance parameters in large liquid-metal fast breeder reactors. Nucl Sci Eng. 1989;103(2):157–165. doi: 10.13182/NSE89-1
  • Palmiotti G, Salvatores M. Use of integral experiments in the assessment of large liquid-metal fast breeder reactor basic design parameters. Nucl Sci Eng. 1984;87(3):333–348. doi: 10.13182/NSE87-333
  • JoanouGD, Dudek JS. GAM-II: a B3 code for the calculation of fast neutron spectra and associated multigroup constants. GA-4265. San Diego (California): General Dynamics Corporation; 1963.
  • SINBAD. Shielding integral benchmark archive and database, version December 2013 [CD-ROM]. Issy-les-Moulineaux (France): OECD Nuclear Energy Agency Data Bank; Oak Ridge (Tennessee): Oak Ridge National Laboratory; 2013.
  • JASPER Sub-Working Group and Reactor Technology Group. JASPER experimental data book (I) –radial shield attenuation experiment–. PNC TN2410 88-005. Tokai-mura (Japan): Japan Nuclear Cycle Development Institute; 1988.
  • Muckenthaler FJ, Rooney BD, Drischler JD. Measurements for the JASPER program radial shield attenuation experiment. ORNL/TM-10371. Oak Ridge (Tennessee): Oak Ridge National Laboratory; 1987.
  • X-5 monte carlo team. MCNP – a general Monte Carlo n-particle transport code, version 5 – vol. I: overview and theory. LA-UR-03-1987. Los Alamos (New Mexico): Los Alamos National Laboratory; 2008.
  • Okumura K. Nuclear data for prediction of isotope generation and depletion. Harada H, Yokoyama K, Iwamoto N, et al. Proceedings of the 2011 Symposium on Nuclear Data. JAEA-Conf. 2012-001:pp. 39–44. Tokai-mura (Japan): Japan Atomic Energy Agency; 2012. doi:10.11484/jaea-conf-2012-001
  • Shibata K, Iwamoto O, Nakagawa T, et al. JENDL-4.0: A new library for nuclear science and engineering. J Nucl Sci Technol. 2011;48(1):1–30. doi: 10.1080/18811248.2011.9711675
  • Wagner JC, Haghighat A. Automated variance reduction of Monte Carlo shielding calculations using the discrete ordinates adjoint function. Nucl Sci Eng. 1998;128(2):186–208. doi: 10.13182/NSE98-2
  • Mosher SW, Johnson SR, Bevill AM. ADVANTG– an automated variance reduction parameter generator. ORNL/TM-2013/416 (Rev.1). Oak Ridge (Tennessee): Oak Ridge National Laboratory;2015.
  • Sugino K, Jin T, Hazama T, et al. Preparation of fast reactor group constant sets UFLIB.J40 and JFS-3-J4.0 based on the JENDL-4.0 data. JAEA-Data/Code 2011-017. Tokai-mura (Japan): Japan Atomic Energy Agency; 2012. doi: 10.11484/jaea-data-code-2011-017
  • Ingersoll DT, White JE, Wright RQ, et al. Production and testing of the VITAMIN-B6 fine group and the BUGLE-93 broad-group neutron/photon cross-section libraries derived from ENDF/B-VI nuclear data. ORNL-6795. Oak Ridge (Tennessee): Oak Ridge National Laboratory;1995.
  • Rearden BT, Jessee MA, editor.SCALE code system. ORNL/TM-2005/39 Version 6.2.3. Oak Ridge (Tennessee): Oak Ridge National Laboratory; 2018.
  • MacFarlane RE, Muir DW, Boicourt RM, et al. The NJOY nuclear processing system, version 2016. LA-UR-17-20093. Los Alamos (New Mexico): Los Alamos National Laboratory;2019.
  • Hazama T, Chiba G, Sato W, et al. SLAROM-UF: ultra fine group cell calculation code for fast reactor -version 20090113- (translated document). JAEA-Review 2009-003. Tokai-mura (Japan): Japan Atomic Energy Agency; 2009. doi: 10.11484/jaea-review-2009-003
  • Alcouffe RE, Baker RS, Dahl JA, et al. PARTISN: time-dependent, parallel neutral particle transport code system. LA-UR-08-07258. Los Alamos (New Mexico): Los Alamos National Laboratory;2008.
  • Williams ML, Broadhead BL, Parks CV. Eigenvalue sensitivity theory for resonance-shielded cross sections. Nucl Sci Eng. 2001;138(2):177–191. doi: 10.13182/NSE00-56
  • Chiba G, Tsuji M, Narabayashi T. Resonance self-shielding effect in uncertainty quantification of fission reactor neutronics parameters. Nucl Eng Technol. 2014;46(3):281–290. doi: 10.5516/NET.01.2014.707
  • Yokoyama K, Jin T, Hirai Y, et al. Development of the versatile reactor analysis code system, MARBLE2. JAEA-Data/Code 2015-009. Tokai-mura (Japan): Japan Atomic Energy Agency;2015. doi: 10.11484/jaea-data-code-2015-009
  • Maruyama S, Endo T, Yamamoto A. An estimation method for an unknown covariance in cross-section adjustment based on unbiased and consistent estimator. J Nucl Sci Technol. 2023;[cited 2023 June 12]. doi: 10.1080/00223131.2023.2203707
  • Siefman D, Hursin M, Schnabel G, et al. Development and application of marginal likelihood optimization for integral parameter adjustment. Ann Nuc Energy. 2021;159:108255. doi: 10.1016/j.anucene.2021.108255
  • Maruyama S, Endo T, Yamamoto A. Applicability evaluation of Akaike’s Bayesian information criterion to covariance modeling in the cross-section adjustment method. EPJ Web Conference. 2023;281:00008. doi:10.1051/epjconf/202328100008
  • OECD Nuclear Energy Agency. International handbook of evaluated reactor physics benchmark experiments. NEA/NSC/DOC(2006)1. Paris (France): OECD Nuclear Energy Agency; 2019.
  • Watanabe T, Endo T, Yamamoto A, et al. Cross section adjustment method based on random sampling technique. J Nucl Sci Technol. 2014;51(5):590–599. doi: 10.1080/00223131.2014.882801
  • Hoefer A, Buss O, Hennebach M, et al. MOCABA: A general Monte Carlo–Bayes procedure for improved predictions of integral functions of nuclear data. Ann Nucl Energy. 2015;77:514–521. doi: 10.1016/j.anucene.2014.11.038
  • Endo T, Yamamoto A, Watanabe T. Bias factor method using random sampling technique. J Nucl Sci Technol. 2016;53(10):1494–1501. doi: 10.1080/00223131.2015.1126541
  • Koning AJ. Bayesian monte carlo method for nuclear data evaluation. Eur Phys J A. 2015;51(12):184. doi: 10.1140/epja/i2015-15184-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.