76
Views
0
CrossRef citations to date
0
Altmetric
Article

High-efficient removal of tungsten from hafnium by TOA/XAD-7 extraction resin from HCl-HF media

, , , , , & show all
Pages 671-678 | Received 02 May 2023, Accepted 05 Sep 2023, Published online: 13 Sep 2023

References

  • Yamamoto T. Evaluation of neutron capture gamma-ray spectra in hafnium and tantalum. J Nucl Sci Tech. 1983;20(9):722–732. doi: 10.1080/18811248.1983.9733459
  • Vockenhuber C, Golser R, Kutschera W et al. 182Hf-from geophysics to astrophysics. Nucl Phys A. 2005;A758:340c–343c. doi: 10.1016/j.nuclphysa.2005.05.062
  • Vockenhuber C, Oberli F, Bichler M et al. New half-life measurement of 182Hf: improved chronometer for the early solar system. Phys Rev Lett. 2004;93:/172501/1–/172501/4. doi: 10.1103/PhysRevLett.93.172501
  • Vockenhuber C, Feldstein C, Paul M et al. Search for live 182Hf in deep-sea sediments. New Astron Rev. 2004;48:161–164. doi: 10.1016/j.newar.2003.11.023
  • Vockenhuber C, Bichler M, Golser R, et al. 182Hf, a new isotope for AMS. Nucl Instrum Meth B. 2004;223-224:823–828. doi: 10.1016/j.nimb.2004.04.152
  • Winkler S, Fifield LK, Tims SG, et al. Improving the detection limit for 182Hf. Nucl Instrum Meth B. 2007;259(1):256–259. doi: 10.1016/j.nimb.2007.01.168
  • Vockenhuber C, Bergmaier A, Faestermann T, et al. Development of isobar separation for 182Hf AMS measurements of astrophysical interest. Nucl Instrum Meth B. 2007;259(1):250–255. doi: 10.1016/j.nimb.2007.01.223
  • Qiu JZ, Jiang S, He M, et al. Measurement of 182Hf with HI-13 AMS system. Nucl Instrum Meth B. 2007;259(1):246–249. doi: 10.1016/j.nimb.2007.01.228
  • Forstner O, Gnaser H, Golser R, et al. Reassessment of 182Hf AMS measurements at VERA. Nucl Instrum Meth B. 2011;269(24):3180–3182. doi: 10.1016/j.nimb.2011.04.022
  • Ward TE, Haustein PE. New Kπ=8-isomer in 182Hf. Phys Rev C. 1971;4:244–246. doi: 10.1103/PhysRevC.4.244
  • Shishkin SV, Shishkina TV, Buklanov GV et al. Separation of carrier free W-178 from alpha-particle activated hafnium with TBP impregnated resin. Czech J Phys. 2003;53:425–427. doi: 10.1007/s10582-003-0055-2
  • Li ZW. Separation of W from Ta, Hf, Lu and Mo by BPHA-C5H11OH/HCl extraction system (model experiments for chemical study of seaborgium, the 106th element). Nucl Sci Tech. 2001;12:87–93.
  • Schumann D, Dressler R, Taut S. On-line separation of short-lived tungsten isotopes from tantalum, hafnium and lutetium by adsorption on ion exchangers from aqueous ammonia solution. J Radioanal Nucl Chem Letters. 1996;214:1–7. doi: 10.1007/BF02165053
  • Szeglowski Z, Guseva LI, Lien DT. On line ion exchange separation of short-lived Zr, Hf, Mo, Ta and W isotopes as homologs of transactinide elements. J Radioanal Nucl Chem. 1998;228:145–149. doi: 10.1007/BF02387316
  • Kleine T, Münker C, Mezger K et al. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature. 2002;418:952–955. doi: 10.1038/nature00982
  • Kleine T, Mezger K, Muenker C et al. 182Hf-182W isotope systematics of chondrites, eucrites, and Martian meteorites: chronology of core formation and early mantle differentiation in Vesta and Mars. Geochimica Cosmochim Acta. 2004;68:2935–2946. doi: 10.1016/j.gca.2004.01.009
  • Horan MF, Smoliar MI, Walker RJ. 182W and 187Re-187Os systematics of iron meteorites: chronology for melting, differentiation, and crystallization in asteroids. Geochim Cosmochim Acta. 1998;62(3):545–554. doi: 10.1016/S0016-7037(97)00368-2
  • Coedo AG, López TD, Alguacil F. On-line ion-exchange separation and determination of niobium, tantalum, tungsten, zirconium and hafnium in high-purity iron by flow injection inductively coupled plasma mass spectrometry. Anal Chim Acta. 1995;315:331–338. doi: 10.1016/0003-2670(95)00335-W
  • Peters STM, Münker C, Wombacher F, et al. Precise determination of low abundance isotopes (174Hf, 180W and 190Pt) in terrestrial materials and meteorites using multiple collector ICP-MS equipped with 1012 Ω faraday amplifiers. Chem Geol. 2015;413:132–145. doi: 10.1016/j.chemgeo.2015.08.018
  • Peters BJ, Mundl-Petermeier A, Horan MF et al. Chemical separation of tungsten and other trace elements for TIMS isotope ratio measurements using organic acids. Geostand Geoanal Res. 2019;43:245–259. doi: 10.1111/ggr.12259
  • Chu ZY, Xu JJ, Li CF, et al. A chromatographic method for separation of tungsten (W) from silicate samples for high-precision isotope analysis using negative thermal ionization mass spectrometry. Anal Chem. 2020;92(17):11987–11993. doi: 10.1021/acs.analchem.0c02431
  • Jiang T, Yang TZ, Qiu JZ et al. Sample preparation of HfF4 for AMS. Chin Nucl Tech. 2007;30:660–664.
  • Maji S, Lahiri S, Wierczinski B, et al. Separation of trace level hafnium from tungsten: a step toward solving an astronomical puzzle. Anal Chem. 2006;78(7):2302–2305. doi: 10.1021/ac051120y
  • Fan JL, Zhang SD, Lu JC et al. Separation of hafnium from tungsten by extraction chromatography with TOA in HCl-H2O2 mixture. J Radioanal Nucl Chem. 2010;284:93–98. doi: 10.1007/s10967-010-0481-0
  • Kraus KA, Moore GE. Separation of zirconium and hafnium with anion exchange resin. J Am Chem Soc. 1949;71:3263–3263. doi: 10.1021/ja01177a534
  • Huffman EH, Lilly RC. Anion exchange of complex ions of hafnium and zirconium in HCl-HF mixtures. J Am Chem Soc. 1951;73:2902–2905. doi: 10.1021/ja01150a141
  • Dixon EJ, Headridge JB. The anion-exchange separation of titanium, zirconium, niobium, tantalum, molybdenum and tungsten, with particular reference to the analysis of alloys. Analyst. 1964;89(1056):185–204. doi: 10.1039/an9648900185
  • Trubert D, Monroy Guzman F, Le Naour C et al. Behaviour of Zr, Hf, Nb, Ta and Pa on macroporous anion exchanger in chloride-fluoride media. Anal Chim Acta. 1998;374:149–158. doi: 10.1016/S0003-2670(98)00464-4
  • Kraus KA, Nelson F, Moore GE. Anion exchange studies. XVII. molybdenum (VI), tungsten (VI), and uranium (VI) in HCl and HCl-HF solutions. J Am Chem Soc. 1955;77:3972–3977. doi: 10.1021/ja01620a008
  • Trubert D, Monroy-Guzman F, Hussonnois M, et al. Search for chemical separation of element 106 homologues in HF and HF-HCl media. Anal Chim Acta. 1996;332(2–3):257–268. doi: 10.1016/0003-2670(96)00242-5
  • Kronenberg A, Mohapatra PK, Kratz JV, et al. Anion-exchange behavior of Mo and W as homologs of Sg (element 106) in HCl and HNO3 as well as in mixed HCl-HF and HNO3-HF solutions. Radiochim Acta. 2004;92(7):395–403. doi: 10.1524/ract.92.7.395.35747
  • Firestone RB, Shirley VS. Tables of isotopes. New York: Wiley; 1996.
  • Iwamoto O, Iwamoto N, Kunieda S, et al. Japanese evaluated nuclear data library version 5: JENDL-5. J Nucl Sci Technol. 2023;60(1):1–60. doi: 10.1080/00223131.2022.2141903
  • Konno C. New JENDL-4.0/HE neutron and proton ACE files. J Nucl Sci Technol. 2023. doi: 10.1080/00223131.2023.2237970
  • Watanabe T, Tada K, Endo T et al. Impact of nuclear data revised from JENDL-4.0 to JENDL-5 on PWR spent fuel nuclide composition. J Nucl Sci Technol. 2023. doi: 10.1080/00223131.2023.2201603
  • Tada K, Nagaya Y, Taninaka H et al. JENDL-5 benchmarking for fission reactor applications. J Nucl Sci Technol. 2023. doi: 10.1080/00223131.2023.2197439
  • Konno C, Ohta M, Kwon S et al. JENDL-5 benchmark test for shielding applications. J Nucl Sci Technol. 2023;60(9):1046–1069. doi: 10.1080/00223131.2022.2164372
  • Fan JL, Duan L, Wang YF et al. Assembly of a polymer-based extraction resin and separation of minor actinides. Colloids Surf. 2021;610:125473–125479. doi: 10.1016/j.colsurfa.2020.125473
  • Dong HR, Ning SY, Li ZY et al. Efficient separation of palladium from high-level liquid waste with novel adsorbents prepared by sulfhydryl organic ligands containing imidazole, thiazole and oxazole composited with XAD7HP. J Water Process Eng. 2023;53:103681–103693. doi: 10.1016/j.jwpe.2023.103681
  • Ning SY, Zhang SC, Zhang W et al. Separation and recovery of Rh, Ru and Pd from nitrate solution with a silica-based IsoBu-BTP/SiO2-P adsorbent. Hydrometallurgy. 2020;191:105207–105214. doi: 10.1016/j.hydromet.2019.105207
  • Pershina V. Theoretical treatment of the complexation of element 106, Sg, in HF solutions. Radiochim Acta. 2004;92(8):455–462. doi: 10.1524/ract.92.8.455.39279
  • Yang XJ, Pin C. Separation of hafnium and zirconium from Ti- and Fe-rich geological materials by extraction chromatography. Anal Chem. 1999;71(9):1706–1711. doi: 10.1021/ac980833w
  • Wang YF, Liu ZC, Fan JL, et al. Mutual separation of trivalent americium and curium using the BCPDTPA/XAD-7 composite sorbent with pure nitric acid solution. J Radioanal Nucl Chem. 2021;330(1):67–75. doi: 10.1007/s10967-021-07918-2
  • Dai Y, Lv RW, Fan JL, et al. Adsorption of cesium using supermolecular impregnated XAD-7 composite: isotherms, kinetics and thermodynamics. J Radioanal Nucl Chem. 2019;321(2):473–480. doi: 10.1007/s10967-019-06625-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.