4,018
Views
21
CrossRef citations to date
0
Altmetric
Technical Material

Recent improvements of the particle and heavy ion transport code system – PHITS version 3.33

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 127-135 | Received 15 Jun 2023, Accepted 20 Oct 2023, Published online: 09 Nov 2023

References

  • Sato T, Iwamoto Y, Hashimoto S, et al. Features of particle and heavy ion transport code system PHITS version 3.02. J Nucl Sci Technol. 2018;55(6):684–690. doi: 10.1080/00223131.2017.1419890
  • Iwase H, Niita K, Nakamura T. Development of general-purpose particle and heavy ion transport Monte Carlo code. J Nucl Sci Technol. 2002;39(11):1142–1151. doi: 10.1080/18811248.2002.9715305
  • Sato T, Niita K, Matsuda N, et al. Particle and heavy ion transport code system, PHITS, version 2.52. J Nucl Sci Technol. 2013;50(9):913–923. doi: 10.1080/00223131.2013.814553
  • Iwamoto Y, Sato T, Hashimoto S, et al. Benchmark study of the recent version of the PHITS code. J Nucl Sci Technol. 2017;54(5):617–635. doi: 10.1080/00223131.2017.1297742
  • Iwamoto Y, Hashimoto S, Sato T, et al. Benchmark study of particle and heavy-ion transport code system using shielding integral benchmark archive and database for accelerator-shielding experiments. J Nucl Sci Technol. 2022;59(5):665–675. doi: 10.1080/00223131.2021.1993372
  • Kuga N, Shiiba T, Sato T, et al. Experimental and computational verifications of the dose calculation accuracy of PHITS for high-energy photon beam therapy. J Nucl Sci Technol. in press. doi:10.1080/00223131.2023.2275737.
  • Iwamoto O, Iwamoto N, Kunieda S, et al. Japanese evaluated nuclear data library version 5: JENDL-5. J Nucl Sci Technol. 2023;60(1):1–60. doi: 10.1080/00223131.2022.2141903
  • Liamsuwan T, Nikjoo H. A Monte Carlo track structure simulation code for the full-slowing-down carbon projectiles of energies 1 keV u−1-10 MeV u−1 in water. Phys Med Biol. 2013;58(3):673–701. doi: 10.1088/0031-9155/58/3/673
  • Nikjoo H, Emfietzoglou D, Liamsuwan T, et al. Radiation track, DNA damage and response-a review. Rep Prog Phys. 2016;79(11):116601. doi: 10.1088/0034-4885/79/11/116601
  • Ogawa T, Hirata Y, Matsuya Y, et al. Development and validation of proton track-structure model applicable to arbitrary materials. Sci Rep. 2021;11(1):24401. doi: 10.1038/s41598-021-01822-1
  • Nakayama S, Iwamoto O, Watanabe Y, et al. JENDL/DEU-2020: deuteron nuclear data library for design studies of accelerator-based neutron sources. J Nucl Sci Technol. 2021;58(7):805–821. doi: 10.1080/00223131.2020.1870010
  • Nishitani T, Yoshihashi S, Ogawa K, et al. Neutron yield calculation of thin and thick d-D targets by using PHITS with frag data table. J Nucl Sci Technol. 2022;59(4):534–541. doi: 10.1080/00223131.2021.1981475
  • Watanabe Y, Kosako K, Kunieda S, et al. Status of JENDL high energy file. J Korean Phys Soc. 2011;59(2):1040–1045. doi: 10.3938/jkps.59.1040
  • Matsuda N, Kunieda S, Okamoto T, et al. Ace library of JENDL-4.0/HE. Prog Nucl Sci Technol. 2019;6:225–229. doi: 10.15669/pnst.6.225
  • Shibata K, Iwamoto O, Nakagawa T, et al. JENDL-4.0: a new library for nuclear science and engineering. J Nucl Sci Technol. 2011;48(1):1–30. doi: 10.1080/18811248.2011.9711675
  • Boudard A, Cugnon J, David JC, et al. New potentialities of the Liege intranuclear cascade model for reactions induced by nucleons and light charged particles. Phys Rev C. 2013;87(1):014606. doi: 10.1103/PhysRevC.87.014606
  • Furihata S. Statistical analysis of light fragment production from medium energy proton-induced reactions. Nucl Instrum Meth B. 2000;171(3):251–258. doi: 10.1016/S0168-583X(00)00332-3
  • ACE-J50 website [cited 2023 Apr. 18]. Available from: https://rpg.jaea.go.jp/main/en/ACE-J50/index.html
  • Strumia A, Vissani F. Precise quasielastic neutrino/nucleon cross-section. Phys Lett B. 2003;564(1–2):42–54. doi: 10.1016/S0370-2693(03)00616-6
  • Nakamura S, Sato T, Ando S, et al. Neutrino-deuteron reactions at solar neutrino energies. Nucl Phys A. 2002;707(3–4):561–576. doi: 10.1016/S0375-9474(02)00993-4
  • Iwamoto H, Meigo S. Unified description of the fission probability for highly excited nuclei. J Nucl Sci Technol. 2019;56(2):160–171. doi: 10.1080/00223131.2018.1539351
  • Ogawa T, Hashimoto S, Sato T, et al. Development of gamma de-excitation model for prediction of prompt gamma-rays and isomer production based on energy-dependent level structure treatment. Nucl Instrum Meth B. 2014;325:35–42. doi: 10.1016/j.nimb.2014.02.007
  • Ogawa T, Hashimoto S, Sato T. Development of PHITS nuclear deexcitation model EBITEM ver.2. J Nucl Sci Technol in press . doi: 10.1080/00223131.2023.2261932
  • Matsuya Y, Kai T, Sato T, et al. Verification of KURBUC-based ion track structure mode for proton and carbon ions in the PHITS code. Phys Med Biol. 2021;66(6):06NT02. doi: 10.1088/1361-6560/abe65e
  • Geissel H, Scheidenberger C, Malzacher P, et al. ATIMA website [cited 2023 Apr. 18]. Available from: http://web-docs.gsi.de/~weick/atima/
  • Kai T, Yokoya A, Ukai M, et al. Cross sections, stopping powers, and energy loss rates for rotational and phonon excitation processes in liquid water by electron impact. Radiat Phys Chem. 2015;108:13–17. doi: 10.1016/j.radphyschem.2014.11.008
  • Matsuya Y, Kai T, Sato T, et al. Track-structure modes in particle and heavy ion transport code system (PHITS): application to radiobiological research. Int J Radiat Biol. 2022;98(2):148–157. doi: 10.1080/09553002.2022.2013572
  • Sakaki Y, Namito Y, Sanami T, et al. Implementation of muon pair production in PHITS and verification by comparing with the muon shielding experiment at SLAC. Nucl Instrum Meth A. 2020;977:164323. doi: 10.1016/j.nima.2020.164323
  • Tsai YS. Pair production and bremsstrahlung of charged leptons. Rev Mod Phys. 1974;46(4):815–851. doi: 10.1103/RevModPhys.46.815
  • Berger MJ, Coursey JS, Zucker MA, et al. Stopping-power & range tables for electrons, protons, and helium ions. NIST Standard Reference Database 124: National Institute of Standards and Technology; 2017. https://dx.doi.org/10.18434/T4NC7P
  • Seltzer SM, Fernandez-Varea JM, Andreo P, et al. ICRU Report 90, key data for ionizing-radiation dosimetry: Measurement standards and applications. J ICRU. 2016;14:1–110.
  • Hirayama H, Namito Y, Bielajew AF, et al. The EGS5 code system. SLAC-R-730 and KEK report 2005-8. USA and Japan: SLAC National Accelerator Laboratory and High Energy Accelerator Research Organization; 2005.
  • Hashimoto S, Sato T. Estimation method of systematic uncertainties in Monte Carlo particle transport simulation based on analysis of variance. J Nucl Sci Technol. 2019;56(4):345–354. doi: 10.1080/00223131.2019.1585989
  • Sato T, Furusawa Y. Cell survival fraction estimation based on the probability densities of domain and cell nucleus specific energies using improved microdosimetric kinetic models. Radiat Res. 2012;178(4):341–356. doi: 10.1667/RR2842.1
  • Sato T, Hashimoto S, Inaniwa T, et al. Implementation of simplified stochastic microdosimetric kinetic models into PHITS for application to radiation treatment planning. Int J Radiat Biol. 2021;97(10):1450–1460. doi: 10.1080/09553002.2021.1956003
  • Nordlund K, Zinkle SJ, Sand AE, et al. Primary radiation damage: a review of current understanding and models. J Nucl Mater. 2018;512:450–479. doi: 10.1016/j.jnucmat.2018.10.027
  • Iwamoto Y, Meigo S, Hashimoto S. Estimation of reliable displacements-per-atom based on athermal-recombination-corrected model in radiation environments at nuclear fission, fusion, and accelerator facilities. J Nucl Mater. 2020;538:152261. doi: 10.1016/j.jnucmat.2020.152261
  • Sato T, Matsuya Y, Ogawa T, et al. Improvement of the hybrid approach between Monte Carlo simulation and analytical function for calculating microdosimetric probability densities in macroscopic matter. Phys Med Biol. 2023;68(15):155005. doi: 10.1088/1361-6560/ace14c
  • Kai T, Maekawa F, Kosako K, et al. DCHAIN-SP 2001: high energy particle induced radioactivity calculation code. JAERI-Data/code 2001-016. Japan: Japan Atomic Energy Research Institute; 2001.
  • Ratliff HN, Matsuda N, Abe S, et al. Modernization of the DCHAIN-PHITS activation code with new features and updated data libraries. Nucl Instrum Meth B. 2020;484:29–41. doi: 10.1016/j.nimb.2020.10.005
  • Matthiä D, Berger T, Mrigakshi AI, et al. A ready-to-use galactic cosmic ray model. Adv Space Res. 2013;51(3):329–338. doi: 10.1016/j.asr.2012.09.022
  • Tylka AJ, Dietrich WF, editors. A new and comprehensive analysis of proton spectra in ground-level enhanced (GLE) solar particle events. The 31st International Cosmic Ray Conference; 2009; Poland: Universal Academy Press, Lodź; 2009.
  • Sato T, Nagamatsu A, Ueno H, et al. Comparison of cosmic-ray environments on earth, moon, mars, and spacecraft using PHITS. Radiat Prot Dosim. 2018;180(1–4):146–149. doi: 10.1093/rpd/ncx192
  • Sawyer D, Vette J AP-8 trapped proton environment for solar maximum and solar minimum. Report 76-06. Greenbelt, Maryland: National Space Science Data Center; 1976.
  • Heynderickx D, Quaghebeur B, Wera J, et al. New radiation environment and effects models in the European space agency’s space environment information system (SPENVIS). Space Weather. 2004;2(10):S10S03. doi: 10.1029/2004SW000073
  • Sato T Analytical model for estimating terrestrial cosmic ray fluxes nearly anytime and anywhere in the world: extension of PARMA/EXPACS. PLoS One. 2015;10(12):e0144679. doi: 10.1371/journal.pone.0144679
  • Sato T Analytical model for estimating the zenith angle dependence of terrestrial cosmic ray fluxes. PLoS One. 2016;11(8):e0160390. doi: 10.1371/journal.pone.0160390
  • Satoh D, Sato T, Shigyo N, et al. SCINFUL-QMD; Monte Carlo based computer code to calculate response function and detection efficiency of a liquid organic scintillator for neutron energies up to 3 GeV. JAEA-Data/code 2006-023. Japan: Japan Atomic Energy Agency; 2006.
  • Satoh D, Sato T. Improvements in the particle and heavy-ion transport code system (PHITS) for simulating neutron-response functions and detection efficiencies of a liquid organic scintillator. J Nucl Sci Technol. 2022;59(8):1047–1060. doi: 10.1080/00223131.2021.2019622
  • Malins A, Machida M, Niita K, et al. Continuous energy adjoint transport for photons in PHITS. EPJ Web Conf. 2017;153:06001. doi: 10.1051/epjconf/201715306001
  • Ohnishi S. Gxsview: geometry and cross section viewer for calculating radiation transport. Softwarex. 2021;14:100681. doi: 10.1016/j.softx.2021.100681
  • Furuta T, Koba Y, Hashimoto S, et al. Development of the DICOM-based Monte Carlo dose reconstruction system for a retrospective study on the secondary cancer risk in carbon ion radiotherapy. Phys Med Biol. 2022;67(14):145002. doi: 10.1088/1361-6560/ac7998
  • Sato T, Furuta T, Liu Y, et al. Individual dosimetry system for targeted alpha therapy based on PHITS coupled with microdosimetric kinetic model. EJNMMI Phys. 2021;8(1):4. doi: 10.1186/s40658-020-00350-7
  • Schuemann J, McNamara AL, Warmenhoven JW, et al. A new standard DNA damage (SDD) data format. Radiat Res. 2019;191(1):76–92. doi: 10.1667/RR15209.1
  • Matsuya Y, Kai T, Yoshii Y, et al. Modeling of yield estimation for DNA strand breaks based on Monte Carlo simulations of electron track structure in liquid water. J Appl Phys. 2019;126(12):124701. doi: 10.1063/1.5115519
  • Matsuya Y, Kai T, Parisi A, et al. Application of a simple DNA damage model developed for electrons to proton irradiation. Phys Med Biol. 2022;67(21):215017. doi: 10.1088/1361-6560/ac9a20
  • Zerkin VV, Pritychenko B. The experimental nuclear reaction data (EXFOR): Extended computer database and web retrieval system. Nucl Instrum Meth A. 2018;888:31–43. doi: 10.1016/j.nima.2018.01.045
  • Hirata Y, Kai T, Ogawa T, et al. Implementation of the electron track-structure mode for silicon into PHITS for investigating the radiation effects in semiconductor devices. Jpn J Appl Phys. 2022;61(10):106004. doi: 10.35848/1347-4065/ac8ae9
  • Hirata Y, Kai T, Ogawa T, et al. Development of an electron track-structure mode for arbitrary semiconductor materials in PHITS. Jpn J Appl Phys. 2023;62(10): 106001. doi:10.35848/1347-4065/ad00f4