303
Views
4
CrossRef citations to date
0
Altmetric
Technical Material

Development of nuclear data processing code FRENDY version 2

ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, , & show all
Pages 830-839 | Received 26 Sep 2023, Accepted 25 Oct 2023, Published online: 13 Nov 2023

References

  • Iwamoto O, Iwamoto N, Kunieda S, et al. Japanese evaluated nuclear data library version 5: JENDL-5. J Nucl Sci Technol. 2023;60(1):1–60. doi: 10.1080/00223131.2022.2141903
  • Brown DA, Chadwick MB, Capote R, et al. ENDF/B-VIII.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nucl Data Sheets. 2018 Feb;148:1–142.
  • Plompen AJM, Cabellos O, De Saint Jean C, et al. The joint evaluated fission and fusion nuclear data library, JEFF-3.3. Eur Phys J A. 2020 Jul;56(7):181. doi: 10.1140/epja/s10050-020-00141-9
  • Koning AJ, Rochman D, J-Ch S, et al. TENDL: complete nuclear data library for innovative nuclear science and technology. Nucl Data Sheets. 2019;155:1–55. doi: 10.1016/j.nds.2019.01.002
  • Trkov A, Herman M, Brown DA. ENDF-6 format manual. Upton (USA): Brookhaven National Laboratory; 2018. (BNL-203218-2018-INRE)
  • Nagaya Y, Okumura K, Sakurai T et al. MVP/GMVP version 3: General Purpose Monte Carlo codes for neutron and photon transport calculations Based on continuous energy and multigroup methods. Tokai-mura (Japan): Japan Atomic Energy Agency; 2017. ( JAEA-Data/Code 2016-018)
  • Sato T, Iwamoto Y, Hashimoto S, et al. Features of particle and Heavy Ion transport code System (PHITS) version 3.02. J Nucl Sci Technol. 2018;55(5–6):684–690. doi: 10.1080/00223131.2017.1419890
  • Werner CJ, editor. MCNP user’s manual code version 6.2. (LA-UR–17–29981). Los Alamos (USA): Los Alamos National Laboratory; 2017.
  • Leppänen J, Pusa M, Viitanen T, et al. The Serpent Monte Carlo code: status, development and applications in 2013. Ann Nucl Energy. 2015;82:142–150. doi: 10.1016/j.anucene.2014.08.024
  • Romano PK, Horelik NE, Herman BR, et al. OpenMC: a state-of-the-art Monte Carlo code for research and development. Ann Nucl Energy. 2015;82:90–97. doi: 10.1016/j.anucene.2014.07.048
  • Tada K, Yamamoto A, Kunieda S et al. Nuclear data processing code FRENDY version 2. Tokai-mura (Japan): Japan Atomic Energy Agency; 2023. ( JAEA-Data/Code 2022-009)
  • Kahler AC, editor. The NJOY nuclear data processing system, version 2016. Los Alamos (USA): Los Alamos National Laboratory; 2016. (LA-UR–17–20093)
  • Cullen DE. PREPRO 2021. Vienna (Austria): International Atomic Energy Agency; 2021. (IAEA-NDS-0238)
  • Tada K, Nagaya Y, Kunieda S, et al. Development and verification of a new nuclear data processing system FRENDY. J Nucl Sci Technol. 2017;54:806–817. doi: 10.1080/00223131.2017.1309306
  • Mattoon C, Beck B, Gert G et al. Managing and processing nuclear data libraries with FUDGE. EPJ Web Of Conf. 2023;284:14010. doi: 10.1051/epjconf/202328414010
  • Wiarda D, Dunn ME, Green NM, et al. AMPX-6: a modular code System for processing ENDF/B. Oak Ridge (USA): Oak Ridge National Laboratory;2016. (ORNL/TM-2016/43).
  • Sinitsa VV, Rineiskij AA. GRUKON – a package of applied computer programs System input and operating procedures of functional modules. Vienna (Austria): International Atomic Energy Agency; 1993. (INDC(CCP)-344)
  • Zu T, Xu J, Tang Y, et al. NECP-Atlas: a new nuclear data processing code. Ann Nucl Energy. 2019;123:153–161. doi: 10.1016/j.anucene.2018.09.016
  • Liu P, Wu X, Ge Z, et al. Progress on China nuclear data processing code system. EPJ Web Conf. 2017;146:02004. doi: 10.1051/epjconf/201714602004
  • Coste-Delclaux M, Jouanne C, Mounier C et al. Current status of the verification and processing system GALILÉE-1 for evaluated data. EPJ Web Of Conf. 2023;284:14007. doi: 10.1051/epjconf/202328414007
  • Haeck W. GAIA user’s manual - version 1.0.0. Paris (France): Institut de Radioprotection et de Sûreté Nucléaire; 2015. (PSN-EXP/SNC/2015-165)
  • Conlin JL, Trkov A, editor. Nuclear data processing summary Report of the technical meeting IAEA Headquarters, 3-6 September 2018. Vienna (Austria): International Atomic Energy Agency; 2018. (INDC(NDS)-0766)
  • Conlin JL, editor. A compact ENDF (ACE) format specification. (LA-UR-19-29016). Los Alamos (USA): Los Alamos National Laboratory; 2019.
  • Yamamoto A, Tada K, Chiba G, et al. Multi-group neutron cross section generation capability for FRENDY nuclear data processing code. J Nucl Sci Technol. 2021;58:1165–1183. doi: 10.1080/00223131.2021.1921631
  • Yamamoto A, Endo T, Tada K. Adaptive setting of background cross sections for generation of effective multi-group cross sections in FRENDY nuclear data processing code. J Nucl Sci Technol. 2021;58:1343–1350. doi: 10.1080/00223131.2021.1944930
  • Yamamoto A, Endo T, Chiba G, et al. Implementation of resonance upscattering treatment in FRENDY nuclear data processing System. Nucl Sci Eng. 2022;196(11):1267–1279. doi: 10.1080/00295639.2022.2087833
  • Tada K, Kondo R, Endo T, et al. Development of ACE file perturbation tool using FRENDY. J Nucl Sci Technol. 2023;60:624–631. doi: 10.1080/00223131.2022.2130463
  • Tada K, Endo T. Convergence behavior of statistical uncertainty in probability table for cross section in unresolved resonance region. J Nucl Sci Technol. 2023;60:1397–1405. doi: 10.1080/00223131.2023.2204102
  • Fujimoto N, Tada K, Quan Ho H, et al. Nuclear data processing code FRENDY: a verification with HTTR criticality benchmark experiments. Ann Nucl Energy. 2021;158:108270. doi: 10.1016/j.anucene.2021.108270
  • Chiba G, Yamamoto A, Tada K. ACE-FRENDY-CBZ: a new neutronics analysis sequence using multi-group neutron transport calculations. J Nucl Sci Technol. 2023;60:132–139. doi: 10.1080/00223131.2022.2087783
  • Ono M, Tojo M, Tada K et al. Investigation of the impact of difference between FRENDY and NJOY2016 on neutronics calculations. Proceedings of Physor2022; 2022 May 15–20; Pittsburgh (PA) Lagrange Park (IL): American Nuclear Society; 2022.
  • MacFarlane RE, Muir DW. The NJOY nuclear data processing system, version 2016. Los Alamos (USA): Los Alamos National Laboratory; 1994. (LA-12740-M)
  • Lindley BA, Hosking JG, Smith PJ, et al. Current status of the reactor physics code WIMS and recent developments. Ann Nucl Energy. 2017;102:148–157. doi: 10.1016/j.anucene.2016.09.013
  • https://rpg.jaea.go.jp/main/en/ACE-J50/index.html
  • Shibata K, Iwamoto O, Nakagawa T, et al. JENDL-4.0: a new library for nuclear science and technology. J Nucl Sci Technol. 2011;48:1–30. doi: 10.1080/18811248.2011.9711675
  • Chadwick MB, Herman M, Oblozinsky P, et al. ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl Data Sheets. 2011 Dec;112(12):2887–2996. doi: 10.1016/j.nds.2011.11.002
  • Cacuci D, editor. Handbook of nuclear engineering. New York: Springer US; 2010. Chap. 9. Lattice Physics Computations. (ISBN 978-0-387-98150–5)
  • Kier P, Robba A. RABBLE, a program for computation of resonance integrals in multiregion reactor cells. Argonne (USA): Argonne National Laboratory; 1967. (ANL–7326)
  • Yamamoto A, Sugimura N. Improvement on multi-group scattering matrix in thermal energy range generated by NJOY. Ann Nucl Energy. 2006;33(6):555–559. doi: 10.1016/j.anucene.2006.01.005
  • Wormald JL, Thompson JT, Trumbull TH. Implementation of an adaptive energy grid routine in NDEX for the processing of thermal neutron scattering cross sections. Ann Nucl Energy. 2020;149:107773. doi: 10.1016/j.anucene.2020.107773
  • Tada K, Linearization of thermal neutron scattering cross section to optimize the number of energy grid points. Proceedings of ICNC2023. 2023: Oct. 2-5; Sendai, Japan.
  • Yamamoto H, Ito S. New continuous slowing-down theory for fast reactor spectra. J Nucl Sci Technol. 1972;9:662–669. doi: 10.1080/18811248.1972.9734919
  • Kondo R, Endo T, Yamamoto A, et al. Improvements in computational efficiency for resonance calculation using energy spectrum expansion method. Nucl Sci Eng. 2022;196(7):769–791. doi: 10.1080/00295639.2021.2025297
  • Fritsch N, Carlson E. Monotone piecewise cubic interpolation. SIAM J Numerical Analysis. 1980;17(2):238–246. doi: 10.1137/0717021
  • Lee D, Smith K, Rhodes J. The impact of 238U resonance elastic scattering approximations on thermal reactor Doppler reactivity. Ann Nucl Energy. 2009;36(3):274–280. doi: 10.1016/j.anucene.2008.11.026
  • Becker B, Dagan R, Broeders CHM, et al. Improvement of the resonance scattering treatment in MCNP in view of HTR calculations. Ann Nucl Energy. 2009;36(3):281–285. doi: 10.1016/j.anucene.2008.12.009
  • Mori T, Nagaya Y. Comparison of resonance elastic scattering models newly implemented in MVP continuous-energy Monte Carlo code. J Nucl Sci Technol. 2009;46:793–798. doi: 10.1080/18811248.2007.9711587
  • Fiorito L, Žerovnik G, Stankovskiy A, et al. Nuclear data uncertainty propagation to integral responses using SANDY. Ann Nucl Energy. 2017;101:359–366. doi: 10.1016/j.anucene.2016.11.026
  • Kleedtke N, Haeck W, Hutchinson J. Utilization of ACE nuclear data file toolkit ACEtk to calculate relative sensitivity coefficients of point-kinetics parameters. Ann Nucl Energy. 2023;193:110031. doi: 10.1016/j.anucene.2023.110031
  • Endo T, Watanabe T, Yamamoto A. Confidence interval estimation by bootstrap method for uncertainty quantification using random sampling method. J Nucl Sci Technol. 2015;52:993–999. doi: 10.1080/00223131.2015.1034216
  • https://eigen.tuxfamily.org/index.php?title=Main_Page
  • https://www.mozilla.org/en-US/MPL/2.0/
  • Ribon P. The resonance self-shielding calculation with regularized random ladders. Ann Nucl Energy. 1986;13(4):209–217. doi: 10.1016/0306-4549(86)90028-9
  • Tada K, Margulis M, Blaise P. Investigation of appropriate ladder number on probability table generation. EPJ Web Conf. 2021;247:09002. doi: 10.1051/epjconf/202124709002
  • Fischer H. A history of the central limit theorem. New York, NY: Springer New York; 2011.
  • Ingersoll DT, White JE, Wright RQ, et al. Production and testing of the VITAMIN-B6 fine-group and the BUGLE-93 broad-group neutron/photon cross-section libraries derived from ENDF/B-VI nuclear data. Oak Ridge (USA): Oak Ridge National Laboratory;1995. (ORNL-6795).
  • Vontobel P, Pelloni S. New JEF/EFF based MATXS-Formatted nuclear data libraries. Nucl Sci Eng. 1989;101(3):298–301. doi: 10.13182/NSE89-A23618
  • WW E Jr. A Users manual for ANISN: a one dimensional discrete ordinates transport code with anisotropic scattering. Oak Ridge (USA): Union Carbide Corporation; 1967. (K-1693)
  • MacFarlane RE. TRANSX 2: a code for interfacing MATXS cross-section libraries to nuclear transport codes. Los Alamos (USA): Los Alamos National Laboratory; 1993. (LA-12312-MS.)
  • OECD/NEA. Specifications for the generalised nuclear data structure (GNDS) version 2.0. France: OECD/NEA; 2023. NEA No. 7647.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.