529
Views
0
CrossRef citations to date
0
Altmetric
Article

Evaluation of radiation dose caused by bremsstrahlung photons generated by high-energy beta rays using the PHITS and GEANT4 simulation codes

ORCID Icon
Pages 894-910 | Received 27 Jun 2023, Accepted 16 Nov 2023, Published online: 03 Dec 2023

References

  • Sanada Y, Sugita T, Nishizawa Y, et al. The aerial radiation monitoring in Japan after the Fukushima Daiichi nuclear power plant accident. Prog Nucl Sci Technol. 2014;4:76–80. doi: 10.15669/pnst.4.76
  • Saito K, Mikami S, Andoh M, et al. Summary of temporal changes in air dose rates and radionuclide deposition densities in the 80 km zone over five years after the Fukushima nuclear power plant accident. J Environ Radioact. 2019;210:105878. doi: 10.1016/j.jenvrad.2018.12.020
  • Andoh M, Mikami S, Tsuda S, et al. Decreasing trend of ambient dose equivalent rates over a wide area in eastern Japan until 2016 evaluated by car-borne surveys using KURAMA systems. J Environ Radioact. 2018;192:385–398. doi: 10.1016/j.jenvrad.2018.07.009
  • Andoh M, Yamamoto H, Kanno T, et al. Measurement of ambient dose equivalent rates by walk survey around Fukushima Dai-ichi nuclear power plant using KURAMA-II until 2016. J Environ Radioact. 2018;190-191:111–121. doi: 10.1016/j.jenvrad.2018.04.025
  • Mikami S, Tanaka H, Matsuda H, et al. The deposition densities of radiocesium and the air dose rates in undisturbed fields around the Fukushima Dai-ichi nuclear power plant; their temporal changes for five years after the accident. J Environ Radioact. 2019;210:105941. doi: 10.1016/j.jenvrad.2019.03.017
  • Matsuda N, Mikami S, Shimoura S, et al. Depth profiles of radioactive cesium in soil using a scraper plate over a wide area surrounding the Fukushima Dai-ichi nuclear power plant, Japan. J Nucl Sci Technol. 2015;139:427–434. doi: 10.1016/j.jenvrad.2014.10.001
  • Sato Y, Terasaka Y. Radiation imaging of a highly contaminated filter train inside Fukushima Daiichi nuclear power station unit 2 using an integrated radiation imaging System based on a Compton camera. J Nucl Sci Technol. 2023;60(8):1013–1026. doi: 10.1080/00223131.2022.2159894
  • Terada H, Nagai H, kadowaki M et al. Dependency of the source term estimation method for radionuclides released into the atmosphere on the available environmental monitoring data and its applicability to real-time source term estimation. J Nucl Sci Technol. 2023;60(8):980–1001. doi: 10.1080/00223131.2022.2162139
  • Omori Y, Sasaki R, Otsuki Y, et al. Walking survey technique for ambient gamma dose rate measurement established in Fukushima Medical University. J Nucl Sci Technol. 2022;59(8):1061–1070. doi: 10.1080/00223131.2021.2023370
  • Shinma D, Murata Y, Ueno Y, et al. Dose rate distribution measuring method using personal dosimeters and localization devices. J Nucl Sci Technol. 2022;59(8):972–982. doi: 10.1080/00223131.2021.2023369
  • Sato T, Niita K, Matsuda N, et al. Particle and heavy ion transport code system, PHITS, version 2.52. J Nucl Sci Technol. 2013;50:913–923. doi: 10.1080/00223131.2013.814553
  • Sato T, Niita K, Matsuda N, et al. Overview of particle and heavy ion transport code system PHITS. Ann Nucl Energy. 2015;82:110–115. doi: 10.1016/j.anucene.2014.08.023
  • Sato T, Iwamoto Y, Hashimoto S, et al. Features of Particle and Heavy Ion transport code System (PHITS) version 3.02. J Nucl Sci Technol. 2018;55(5–6):684–690.
  • The 9th committee on accident analysis of Fukushima Daiichi nuclear power station, Document 3 and 4 [Internet]. Japan: Nuclear Regulation Authority; 2019 Dec 26 [cited 2023 Feb 21]. Available from: https://www.nsr.go.jp/disclosure/committee/yuushikisya/jiko_bunseki01/140000009.html [in Japanese].
  • The committee on accident analysis of Fukushima Daiichi nuclear power station (before 2021 Oct) [Internet]. Japan: Nuclear Regulation Authority; 2021 Oct 19 [cited 2023 Feb 21]. Available from: https://www.nsr.go.jp/disclosure/committee/yuushikisya/jiko_bunseki01/2021.html [in Japanese]
  • The 28th committee on accident analysis of Fukushima Daiichi nuclear power station [Internet]. Japan: Nuclear Regulation Authority; 2022 Feb 28 [cited 2023 Feb 21]. Available from: https://www.nsr.go.jp/disclosure/committee/yuushikisya/jiko_bunseki01/140000067.html [in Japanese]
  • Agostinella S, Allison J, Amako K, et al. Geant4 - a simulation toolkit. Nucl Instrum Methods Phys Res A. 2003;506:250–303.
  • Geant4 Collaboration. GEANT4: physics reference manual release 10.4. 2017 [cited 2023 Jun 22] Available from: https://indico.cern.ch/event/679723/contributions/2792554/attachments/1559217/2454299/hysic sReferenceManual.pdf
  • Allison J, Amako K, Apostolakis K, et al. Recent developments in GEANT4. Nucl Instr Meth A. 2016;835:186–225. doi: 10.1016/j.nima.2016.06.125
  • ICRP. Conversion coefficients for use in radiological protection against external radiation. ICRP Pulication. 74. Oxford: Pergamon Press; 1996.
  • Murata T, Miwa K, Matsubayashi F, et al. Optimal radiation shielding for beta and bremsstrahlung radiation emitted by 89Sr and 90Y: validation by empirical approach and Monte Carlo simulations. Ann Nucl Med. 2014;28(7):617–622.
  • Hirayama H, Namito Y, Bielajew AF, et al. The EGS5 CODE SYSTEM. 2015 [cited 2023 Jun 22] Available from: http://rcwww.kek.jp/research/egs/egs5_manual/slac730-150228.pdf
  • Mrdja D, Bikit K, Bikit I, et al. Monte Carlo simulation of beta particle-induced bremsstrahlung doses. J Radiol Prot. 2018;38(1):34–47. doi: 10.1088/1361-6498/aa928f
  • Koch HW., W J., WM J. Bremsstrahlung cross-section formulas and related data. Rev Mod Phys. 1959;31:920–955. doi: 10.1103/RevModPhys.31.920
  • Rogers DWO, Duane S, Bielajew AF et al. Use of ICRU-37/NBS radiative stopping powers in the EGS4 system. Report PIRS-0177, National Research Council of Canada, 1989.
  • ICRU. Stopping powers for electrons and positrons, ICRU Report 37 1984
  • Perkins ST, Cullen DE, Seltzer SM. Tables and graphs of electron-interaction cross sections from 10eV to 100 GeV derived from the LLNL evaluated electron data Library, Z=1-100. UCRL-50400 1991;31.
  • Seltzer M, J BM. Bremsstrahlung spectra from electron interactions with screened atomic nuclei and orbital electrons. Nucl Instrum Meth Phys Res B. 1985;12:95.
  • Seltzer M, Berger MJ. Bremsstrahlung energy spectra from electrons with kinetic energy 1 keV-10 GeV incident on screened nuclei and orbital electrons of neutral atoms with Z = 1-100. At Data And Nucl Data Tables. 1986;35:345.
  • Pratt RH, Rseng HK, Lee CM, et al. Bremsstrahlung energy spectra from electrons of kinetic energy 1 keV ≤ T1 ≤ 2000 keV incident on neutral atoms 2≤ Z ≤ 92. At Data Nucl Data Tables. 1977;20:175. errata in 1981:26:477.
  • Tsai Y. Pair production and bremsstrahlung of charged leptons. Rev Mod Phys. 1977;49:421.
  • Kissel L, Quarls CA, Pratt RH. Bremsstrahlung from electron collisions with neutral atoms. At Data Nucl Data Tables. 1983;28:382.
  • Tseng HK, Pratt RH, Lee CM. Electron bremsstrahlung angular distributions in the 1-500 keV energy range. Phys Rev A. 1979;19:187.
  • Text of the training session in ESG workshop [Internet]. Japan: KEK Radiation Science Center [cited 2023 Jun 22]. Available from: https://rcwww.kek.jp/egsconf/index.html [in Japanese]
  • Faddegon BA, Ross CK, Rogers DWO. Forward-directed bremsstrahlung of 10- to 30-MeV electrons incident on thick targets of Al and Pb. Med Phys. 1990;17(5):773–785. doi: 10.1118/1.596560
  • Faddegon BA, Ross CK, Rogers DWO. Angular distribution of bremsstrahlung from 15 MeV electrons incident on thick targets of be, al and Pb. Med Phys. 1991;18:727–739.
  • Nair HG, Nayak MK, Dev V, et al. Dose build up correction for radiation monitors in high-energy bremsstrahlung photon radiation fields. Radiat Prot Dosimetry. 2006;118(3):233–237. doi: 10.1093/rpd/nci353
  • Namito Y, Hirayama H, Ban S. Improvements of low-energy photon transport in EGS4. Radiat Phys Chem. 1998;53(3):283–294. doi: 10.1016/S0969-806X(98)00110-8