46
Views
0
CrossRef citations to date
0
Altmetric
Article

Technical research on rapid source term calculation and prediction technology of nuclear accidents based on Bayesian network

, , , , , & show all
Pages 1061-1074 | Received 17 Aug 2023, Accepted 06 Dec 2023, Published online: 17 Dec 2023

References

  • Zhang L, Song W. Preliminary study on inversion model of radioactive release source term. Chinese Journal of Radiologic Health. 2021;30(1):63–68. doi: 10.13491/j.issn.1004-714X.2021.01.014
  • Wang HY, Wang XX. Source item estimation and method comparison of Fukushima Daiichi Nuclear Power Plant accident. Nucl Saf. 2011;2:14–19.
  • Lin WH, Chen LQ. Source item evaluation of Fukushima nuclear accident. Science China: Earth Science. 2015;45(12):1875–1885.
  • Soffer L, Burson SB, Ferrell CM, et al. Accident Source Terms for Light-Water Nuclear Power Plants. US NRC. Washington, DC: Division of Systems Technology Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission; 1995. pp. NUREG–1465.
  • Guo DQ, Tong LL. Analysis of source term behavior of containment failure accident initiated by small break coolant loss. Nucl Sci Eng. 2014;34(4):516–523.
  • Fan YX, Zhang JY. Calculation and analysis of source terms of heat transfer pipe rupture accident of steam generator in PWR nuclear power plant. Nucl Tech. 2020;43(6):060005-1-060005–6.
  • Douglas DD, Konstantin B, John S. Benchmarking Geant4 for spallation neutron source calculations. J Phys. 2016;746(1):012032–012032. doi:10.1088/1742-6596/746/1/012032
  • Haight RC, Lee JD, Maniscalco JA. Reaction rates in a uranium pile surrounding a 14-MeV neutron source: calculations of the Weale experiment. Nucl Sci Eng. 1976;61(1):53–59. doi:10.13182/NSE76-A28460
  • Pigni MT, Croft S, Gauld IC. Uncertainty quantification in (α, n) neutron source calculations for an oxide matrix. Prog Nucl Energy. 2016;91:147–152. doi:10.1016/j.pnucene.2016.04.006
  • Li JM, Yin YH. Study on core damage of EPR unit in serious accidents with CDAG method. Radiation Protection Bulletin. 2019;39(3):1–9.
  • McKenna T, Bouglova E, Lafortune JF, et al. Generic Assessment Procedures for Determining Protective Actions during a Reactor Accident. IAEA. Vienna, Austria: Radiation Safety Section International Atomic Energy Agency; 1997.
  • Grindon E. SPRINT: a tool for probabilistic source term prediction for use with decision support systems. Radiat Prot Dosimetry. 2004;109(1/2):35–9. doi: 10.1093/rpd/nch267
  • Gui G, Zhang K, Blanchard JP et al. Prediction of 4H–SiC betavoltaic microbattery characteristics based on practical Ni-63 sources. Appl Radiat Isot. 2016;107(1):272–277. doi:10.1016/j.apradiso.2015.11.001
  • Zhao YF, Tong JJ, Zhang LG. Rapid source term prediction in nuclear power plant accidents based on dynamic Bayesian networks and probabilistic risk assessment. Ann Nucl Energy. 2021;158:158. doi: 10.1016/j.anucene.2021.108217
  • Lu K, Fang XW, Fang N. PN-BBN: a petri net-based Bayesian network for anomalous behavior detection. Mathematics. 2022;10(20):3790–3790. doi:10.3390/MATH10203790
  • Pu ZY. Network security situation analysis based on a dynamic Bayesian network and phase space reconstruction. J Supercomputing. 2020;76(2):1342–1357. doi:10.1007/s11227-018-2575-3
  • Jean-Marc S. Bayesian network for the prediction of situation awareness errors. International Journal of Human Factors Modelling and Simulation. 2018;6(2/3):119–126. doi:10.1504/IJHFMS.2018.093174
  • Liu DZ, Feng ZH. An improved Bayesian network intrusion detection algorithm based on deep learning. J Phys. 2018;1087(6):062019–062019. doi:10.1088/1742-6596/1087/6/062019
  • Harris AJL, Hahn UH, Madsen JK et al. The appeal to expert opinion: quantitative support for a Bayesian network approach. Cognitive Science. 2016;40(6):1496–533. doi:10.1111/cogs.12276
  • Richard B, Olivier B, Eric F. Reich-Moore parameterization of (α, n) reactions on light nuclei: impact on a neutron source calculation in an oxide fuel. Nucl Sci Eng. 2005;151(2):135–156. doi: 10.13182/NSE05-A2536
  • Wu GH, Tong JJ, Zhang LG. A framework of PRA based source term prediction method to support nuclear emergency response decision making. The Proceedings of the International Conference on Nuclear Engineering (ICONE). 2019;27:1087–1087. doi:10.1299/jsmeicone.2019.27.1087
  • Baghban M, Ayani MB. Source term prediction in a multilayer tissue during hyperthermia. The Journal of Thermal Biology. 2015;52:187–191. doi:10.1016/j.jtherbio.2015.07.006
  • Jequier F, Holstein PA, Fedotoff E. X-ray source term predictions for LMJ high-yield targets. 1997;3047:847–852
  • Huang C. Inference in belief networks: a procedural guide. Int J Approx Reason. 1996;15(3):225–263. doi:10.1016/S0888-613X9600069-2
  • Grabaskas D, Andrus J, Henneke D. Development of the versatile test reactor probabilistic risk assessment nuclear science and engineering. Nucl Sci Eng. 2022;196(sup1):278–288. doi:10.1080/00295639.2021.2014741
  • Segarra JD, Bensi M, Modarres M. A Bayesian network approach for modeling dependent seismic failures in a nuclear power plant probabilistic risk assessment. Reliab Eng Syst Saf. 2021;213. doi: 10.1016/j.ress.2021.107678
  • Zhou TT, Modarres M, Enrique LK. An improved multi-unit nuclear plant seismic probabilistic risk assessment approach. Reliab Eng Syst Saf. 2018;171(1):34–47. doi:10.1016/j.ress.2017.11.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.