119
Views
1
CrossRef citations to date
0
Altmetric
Review

A review on failure behavior and life prediction of circulation pumps in lead-bismuth eutectic cooled reactors

, , , &
Pages 1019-1035 | Received 29 May 2023, Accepted 11 Dec 2023, Published online: 28 Dec 2023

References

  • Li XD, Qu YH, Zhang LH, et al. Forecast of China’s future nuclear energy development and nuclear safety management talents development. IOP Conf Ser Earth Environ Sci. 2021;691(1):012022. doi: 10.1088/1755-1315/691/1/012022
  • Lu Y. Optimization design and reliability analysis of LBE-cooled fast reactor main coolant pump. Zhenjiang, China: Jiangsu University(China); 2019.
  • Tang Y. The study on cavitation erosion behavior of 304 austenitic stainless steel and CLAM steel weld joint in liquid lead bismuth eutectic alloy. Jiangsu University(China); 2017.
  • Li C. A synergy of different corrosion failure modes pertaining to structural steels in liquid lead-bismuth eutectic flow. Hefei, China: University of Science and Technology of China(China); 2021.
  • Guo X, Guo X. Nuclear power development in China after the restart of new nuclear construction and approval: a system dynamics analysis. Renew Sust Energy Rev. 2016;57:999–1007. doi: 10.1016/j.rser.2015.12.190
  • Zheng K, Zhang F, Xu Z, et al. Research on the prospect of nuclear power development in mid-and-long term. IOP Conf Ser Earth Environ Sci. 2020;546:022028. doi: 10.1088/1755-1315/546/2/022028
  • Li N, Chen W, Zhang Q. Development of China TIMES-30P model and its application to model China’s provincial low carbon transformation. Energy Econ. 2020;92:104955. doi: 10.1016/j.eneco.2020.104955
  • Zhou S, Wang Y, Yuan Z, et al. Peak energy consumption and CO2 emissions in China’s industrial sector. Energy Strategy Rev. 2018;20:113–123. doi: 10.1016/j.esr.2018.02.001
  • Zhang X. Main vessel stress analysis and evaluation of lead-bismuth cooled reactor. Hefei, China: University of Science and Technology of China(China); 2014.
  • Murty KL, Charit I. Structural materials for gen-IV nuclear reactors: challenges and opportunities. J Nucl Mater. 2008;383:189–195. doi: 10.1016/j.jnucmat.2008.08.044
  • Kelly JE. Generation IV international forum: a decade of progress through international cooperation. Prog Nucl Energy. 2014;77:240–246. doi: 10.1016/j.pnucene.2014.02.010
  • Magwood WD, Paillere H. Looking ahead at reactor development. Prog Nucl Energy. 2018;102:58–67. doi: 10.1016/j.pnucene.2017.07.001
  • Lu Y, Zhu R, Fu Q, et al. Research on the structure design of the LBE reactor coolant pump in the lead base heap. Nucl Eng Technol. 2019;51(2):546–555. doi: 10.1016/j.net.2018.09.023
  • Rowinski MK, White TJ, Zhao J. Small and medium sized reactors (SMR): a review of technology. Renew Sust Energy Rev. 2015;44:643–656. doi: 10.1016/j.rser.2015.01.006
  • Borreani W, Alemberti A, Lomonaco G, et al. Design and selection of innovative primary circulation pumps for GEN-IV lead fast reactors. Energies. 2017;10(12):10. doi: 10.3390/en10122079
  • Zhao Y. Research on solid-phase oxygen control of lead-bismuth eutectic. North China: Electric Power University(China); 2019.
  • Han J, Liu B, Li W. Summary of lead-cooled fast reactor Research. Nucl Sci Technol. 2018;6:87–97.
  • Kwak J, Kim HR. Development of innovative reactor-integrated coolant system design concept for a small modular lead fast reactor. Int J Energy Res. 2018;42(13):4197–4205. doi: 10.1002/er.4177
  • OECD NEA. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies: 2015 Edition. Paris (France): OECD; 2016, p. 17–27.
  • Rawashdeh AAM, Cong T, Ali MMM. Conservative analytical and experimental investigation of all pumps failure event in the primary cooling system for a 5 MWth research reactor. Prog Nucl Energy. 2022;143:104041. doi: 10.1016/j.pnucene.2021.104041
  • Liu B, Han J, Liu F, et al. Minor actinide transmutation in the lead-cooled fast reactor. Prog Nucl Energy. 2020;119:103148. doi: 10.1016/j.pnucene.2019.103148
  • Nishihara K, Nakayama S, Morita Y, et al. Impact of partitioning and transmutation on LWR high-level waste disposal. J Nucl Sci Technol. 2008;45(1):84–97. doi: 10.1080/18811248.2008.9711418
  • Zhao Z, Xia H. Study on ADS and the sustainable development of nuclear energy. China Nucl Power. 2009;2:202–211.
  • Tsujimoto K, Sasa T, Nishihara K, et al. Accelerator-driven system for transmutation of high-level waste. Prog Nucl Energy. 2000;37(1–4):339–344. doi: 10.1016/S0149-1970(00)00068-8
  • Luo R, Revankar ST, Zhao F. Comparative safety analysis of accelerator driven subcritical systems and critical nuclear energy systems. Appl Sci. 2021;11(17):11. doi: 10.3390/app11178179
  • Li X, Wu H, Cao L, et al. Preliminary conceptual design of accelerator driven sub-critical system. Energy Sci Technol. 2013;47:224–228.
  • Kikuchi K. Material performance in lead and lead-bismuth alloy. Compr Nucl Mater. 2012. Elsevier Inc. doi:10.1016/B978-0-08-056033-5.00096-3
  • Ju N. Research on the corrosion behavior of stainless steel in lead bismuth eutectic alloy at 550 °C. Zhenjiang, China: Jiangsu University(China); 2019.
  • Yuan D, Zhang X, Chen X, et al. Current situation and prospect of the main pump of generation III reactor. Fluid Mach. 2010;38:31–34.
  • Lu Y, Wang X, Liu H, et al. Investigation of the effects of the impeller blades and vane blades on the CAP1400 nuclear coolant pump’s performances with a united optimal design technology. Prog Nucl Energy. 2020;126:103426. doi: 10.1016/j.pnucene.2020.103426
  • Lu Y, Wang X. Optimal design of the guide vane blade of the CAP1400 coolant pump based on the derived multi-source constrained zone. Nucl Eng Des. 2019;342:29–44. doi: 10.1016/j.nucengdes.2018.11.041
  • Parece M, Sloan S. Introduction to the U. Paris, France: SEPR. AREVA NP, Inc.; 2006.
  • Wang S, Zhao J, Sun D, et al. Dynamic response analysis on shaft of canned pump under small break. Mech Eng. 2020;8(3):211–218. doi: 10.1007/s11204-020-09657-0
  • Li HF, Huo YW, Pan ZB, et al. Development and numerical analysis of low specific speed mixed-flow pump. IOP Conf Ser Earth Environ Sci. 2012;15(3):15. doi: 10.1088/1755-1315/15/3/032017
  • Li Y. Energy transfer mechanism and flow control in mixed-flow impeller of nuclear coolant pump. Zhenjiang, China: Jiangsu University(China); 2017.
  • Kim S, Lee KY, Kim JH, et al. High performance hydraulic design techniques of mixed-flow pump impeller and diffuser. J Mech Sci Technol. 2015;29(1):227–240. doi: 10.1007/s12206-014-1229-5
  • Xu B. Numerical Research of radial force on match characteristic between guide vane position and circular casing in reactor coolant pump. Lanzhou, China: Lanzhou University of Technology(China); 2017.
  • Minguan Y, Da W, Gao B, et al. Influences of guide vane - casing volute positions on performance of nuclear reactor coolant pump. J Drain Irrig Mach Eng. 2016;34:110–114.
  • Kurata Y, Saito S. Temperature dependence of corrosion of ferritic/martensitic and austenitic steels in liquid lead-bismuth eutectic. Mater Trans. 2009;50(10):2410–2417. doi: 10.2320/matertrans.M2009173
  • Caro M, Woloshun K, Rubio F, et al. Heavy liquid metal corrosion of structural materials in advanced nuclear systems. JOM. 2013;65(8):1057–1066. doi: 10.1007/s11837-013-0663-7
  • Gale WF, Totemeier TC. editors Equilibrium diagrams. In Smithells Met Ref B. 8th Ed. Oxford: Butterworth-Heinemann; 2004, p. 11–534. https://www.sciencedirect.com/science/article/pii/B9780750675093500142
  • Balbaud F, Martinelli L. Corrosion issues in lead-cooled fast reactor (LFR) and accelerator driven systems (ADS). Nucl Corros Sci Eng. 2012;807–841.
  • Gnanasekaran T, Dayal RK, Raj B. Liquid metal corrosion in nuclear reactor and accelerator driven systems. Nucl Corros Sci Eng. 2012;301–328.
  • Hosemann P, Dickerson R, Dickerson P, et al. Transmission electron microscopy (TEM) on oxide layers formed on D9 stainless steel in lead bismuth eutectic (LBE). Corros Sci. 2013;66:196–202. doi: 10.1016/j.corsci.2012.09.019
  • Min JS, Kim HR. Environmental impact on the Korean peninsula due to hypothetical accidental scenarios at the Haiyang nuclear power plant in China. Prog Nucl Energy. 2018;105:254–262. doi: 10.1016/j.pnucene.2018.01.012
  • Gong X, Xiao J, Wang H, et al. Corrosion behavior and mechanisms of ferritic/martensitic steels and austenitic stainless steels in liquid lead-bismuth eutectic. Nucl Sci Eng. 2020;40:864–871.
  • Dong H, Ye Z, Wang P, et al. Effect of cold rolling on the oxidation resistance of T91 steel in oxygen-saturated stagnant liquid lead-bismuth eutectic at 450°C and 550°C. J Nucl Mater. 2016;476:213–217. doi: 10.1016/j.jnucmat.2016.04.046
  • Sapundjiev D, Van Dyck S, Bogaerts W. Liquid metal corrosion of T91 and A316L materials in Pb–Bi eutectic at temperatures 400–600°C. Corros Sci. 2006;48(3):577–594. doi: 10.1016/j.corsci.2005.04.001
  • Xu G, Li Y, Lei Y, et al. Effect of relative flow velocity on corrosion behavior of high nitrogen austenitic stainless steel in liquid lead-bismuth eutectic alloy. J Chin Soc Corros Prot. 2021;41:899–904.
  • Li Y. Study of unsteady flow and fatigue reliability of the reactor coolant pump’s impeller. Shanghai, China: Shanghai Jiaotong University; 2009.
  • Yang K, Yan W, Wang Z, et al. Development of a novel structural material (SIMP steel) for nuclear equipment with balanced resistances to high temperature, radiation and liquid metal corrosion Jinshu Xuebao/Acta Metallurgica Sinica. Chin Acad Sci. 2016;1207–1221.
  • Shi Q, Liu J, Luan H, et al. Oxidation behavior of ferritic/martensitic steels in stagnant liquid LBE saturated by oxygen at 600 °C. J Nucl Mater. 2015;457:135–141. doi: 10.1016/j.jnucmat.2014.11.018
  • Wang Q, Lai X, Ye D. Effect of different blade thickness of impellers on energy performance of mixed-flow reactor coolant pump. Hedongli Gongcheng/Nuclear Power Eng. 2020;41:28–32.
  • Yang M, Zhang Y, Zhou Z, et al. Influence of different blade trailing edges on energy performance of impellers in a mixed-flow nuclear main pump. Harbin Gongcheng Daxue Xuebao/J Harbin Eng Univ. 2017;38:230–234.
  • Dash N, Kumar Roy A, Kumar K. Design and optimization of mixed flow pump impeller blades with hydrostatic loading and varying semi-cone angle. Mater Today Proc. 2018;5:11608–11615. doi: 10.1016/j.matpr.2018.02.130
  • Singh P, Nestmann F. Internal hydraulic analysis of impeller rounding in centrifugal pumps as turbines. Exp Therm Fluid Sci. 2011;35:121–134. doi: 10.1016/j.expthermflusci.2010.08.013
  • Varchola M, Hlbocan P. Geometry design of a mixed flow pump using experimental results of on internal impeller flow. Procedia Eng. 2012;39:168–174. doi: 10.1016/j.proeng.2012.07.021
  • Srivastava S, Roy AK, Kumar K. Design analysis of mixed flow pump impeller blades using ANSYS and prediction of its parameters using artificial neural network. Procedia Eng. 2014;97:2022–2031. doi: 10.1016/j.proeng.2014.12.445
  • Lu Y, Yang J, Wang X, et al. A symmetrical-nonuniform angular repartition strategy for the vane blades to improve the energy conversion ability of the coolant pump in the pressurized water reactor. Nucl Eng Des. 2018;337:245–260. doi: 10.1016/j.nucengdes.2018.07.007
  • Huang RF, Luo XW, Ji B, et al. Multi-objective optimization of a mixed-flow pump impeller using modified NSGA-II algorithm. Sci China Technol Sci. 2015;58(12):2122–2130. doi: 10.1007/s11431-015-5865-5
  • Quinot P, Desfontaines G. Main components of the European pressurized water reactor. Nucl Eng Des. 1999;187(1):121–133. doi: 10.1016/S0029-5493(98)00261-1
  • Li J, Zeng Y, Liu X, et al. Optimum design on impeller blade of mixed-flow pump based on CFD. Procedia Eng. 2012;31:187–195. doi: 10.1016/j.proeng.2012.01.1011
  • Cao S, Peng G, Yu Z. Hydrodynamic design of rotodynamic pump impeller for multiphase pumping by combined approach of inverse design and CFD analysis. J Fluids Eng Trans ASME. 2005;127(2):330–338. doi: 10.1115/1.1881697
  • Chen G, Ju N, Lei Y, et al. Corrosion behavior of base metal and weld bead of CLAM steel in flowing Pb-Bi at 550 °C. Prog Nucl Energy. 2020;118:103074. doi: 10.1016/j.pnucene.2019.103074
  • Shujian T, Jianwu Z. Corrosion behavior of 316L and T91 steels in stagnant lead-bismuth eutectic at 550℃. J Univ Sci Technol China. 2015;45:751–756.
  • Ding J, Qiu C, Yang F. Research progress on compatibility of stainless steel and lead-bismuth eutectic alloy. Mech Eng. 2021;3:46–49.
  • Zhang WH, Wang ZB, Lu K. Enhanced oxidation resistance of a reduced activation ferritic/martensitic steel in liquid Pb-Bi eutectic alloy by preforming a gradient nanostructured surface layer. J Nucl Mater. 2018;507:151–157. doi: 10.1016/j.jnucmat.2018.04.042
  • Ilinčev G, Kárník D, Paulovič M, et al. The impact of the composition of structural steels on their corrosion stability in liquid Pb–Bi at 500 and 400 °C with different oxygen concentrations. J Nucl Mater. 2004;335(2):210–216. doi: 10.1016/j.jnucmat.2004.07.015
  • Ilinčev G, Kárník D, Paulovič M, et al. The effect of temperature and oxygen content on the flowing liquid metal corrosion of structural steels in the Pb–Bi eutectic. Nucl Eng Des. 2006;236(18):1909–1921. doi: 10.1016/j.nucengdes.2006.02.003
  • Takaya S, Furukawa T, Aoto K, et al. Corrosion behavior of al-alloying high Cr-ODS steels in lead-bismuth eutectic. J Nucl Mater. 2009;386–388:507–510. doi: 10.1016/j.jnucmat.2008.12.155
  • Li D, Qu B, He HY, et al. The influence of liquid Pb–Bi on the anti-corrosion behavior of Fe 3 O 4: a first-principles study. Phys Chem Chem Phys. 2016;18(11):7789–7796. doi: 10.1039/C5CP07564E
  • Ye Z, Wang P, Dong H, et al. Oxidation mechanism of T91 steel in liquid lead-bismuth eutectic: with consideration of internal oxidation. Sci Rep. 2016;6(1):2–11. doi: 10.1038/srep35268
  • Roy M, Martinelli L, Ginestar K, et al. Dissolution and oxidation behaviour of various austenitic steels and Ni rich alloys in lead-bismuth eutectic at 520 °C. J Nucl Mater. 2016;468:153–163. doi: 10.1016/j.jnucmat.2015.11.005
  • Kurata Y. Corrosion behavior of Si-enriched steels for nuclear applications in liquid lead–bismuth. J Nucl Mater. 2013;437(1–3):401–408. doi: 10.1016/j.jnucmat.2013.02.022
  • Li X, Wang Y, Zhu H, et al. Numerical study on the performance of oxygen control bypass of lead-bismuth eutectic system. Hedongli Gongcheng/Nuclear Power Eng. 2021;42:189–194.
  • Qin B, Fu X, Ma H, et al. Preliminary experiment study on control of oxygen concentration via gas phase in liquid lead-bismuth alloy. Cailiao Daobao/Mater Rep. 2019;33:1821–1824.
  • Tsisar V, Schroer C, Wedemeyer O, et al. Characterization of corrosion phenomena and kinetics on T91 ferritic/martensitic steel exposed at 450 and 550 °C to flowing Pb-Bi eutectic with 10−7 mass% dissolved oxygen. J Nucl Mater. 2017;494:422–438. doi: 10.1016/j.jnucmat.2017.07.031
  • Li D, Song C, He HY, et al. An atomistic insight into the corrosion of the oxide film in liquid lead–bismuth eutectic. Phys Chem Chem Phys. 2014;16(16):7417–7422. doi: 10.1039/c3cp54377c
  • Chen L, Tsisar V, Wang M, et al. Effect of oxygen on corrosion of an alumina-forming duplex steel in static liquid lead-bismuth eutectic at 550 °C. Corros Sci. 2021;189:109591. doi: 10.1016/j.corsci.2021.109591
  • Zhang J, Li N, Chen Y, et al. Corrosion behaviors of US steels in flowing lead–bismuth eutectic (LBE). J Nucl Mater. 2005;336(1):1–10. doi: 10.1016/j.jnucmat.2004.08.002
  • Martín-Muñoz FJ, Soler-Crespo L, Gómez-Briceño D. Corrosion behaviour of martensitic and austenitic steels in flowing lead–bismuth eutectic. J Nucl Mater. 2011;416(1–2):87–93. doi: 10.1016/j.jnucmat.2011.01.108
  • Benamati G, Fazio C, Piankova H, et al. Temperature effect on the corrosion mechanism of austenitic and martensitic steels in lead–bismuth. J Nucl Mater. 2002;301(1):23–27. doi: 10.1016/S0022-3115(01)00723-1
  • Chen G, Ju N, Lei Y, et al. Corrosion behavior of 410 stainless steel in flowing lead-bismuth eutectic alloy at 550 °C. J Nucl Mater. 2019;522:168–183. doi: 10.1016/j.jnucmat.2019.05.029
  • Tsisar V, Schroer C, Wedemeyer O, et al. Long-term corrosion of austenitic steels in flowing LBE at 400 °C and 10-7 mass% dissolved oxygen in comparison with 450 and 550 °C. J Nucl Mater. 2016;468:305–312. doi: 10.1016/j.jnucmat.2015.09.027
  • Zhu Z, Zhang Q, Tan J, et al. Corrosion behavior of T91 steel in liquid lead-bismuth eutectic at 550 °C: effects of exposure time and dissolved oxygen concentration. Corros Sci. 2022;204:110405. doi: 10.1016/j.corsci.2022.110405
  • Tian SJ. Growth and exfoliation behavior of the oxide scale on 316L and T91 in flowing liquid lead–bismuth eutectic at 480 °C. Oxid Met. 2020;93:183–194. doi: 10.1007/s11085-019-09953-7
  • Wan T, Saito S. Flow-accelerated corrosion of type 316L stainless steel caused by turbulent lead–bismuth eutectic flow. Metals (Basel). 2018;8(8):627. doi: 10.3390/met8080627
  • Martinelli L, Ginestar K, Botton V, et al. Corrosion of T91 and pure iron in flowing and static Pb-Bi alloy between 450 °C and 540 °C: experiments, modelling and mechanism. Corros Sci. 2020;176:108897. doi: 10.1016/j.corsci.2020.108897
  • Chen G, Lei Y, Zhu Q, et al. Corrosion behavior of CLAM steel weld bead in flowing Pb-Bi at 550 °C. J Nucl Mater. 2019;515:187–198. doi: 10.1016/j.jnucmat.2018.12.038
  • Choi J, Hwang I, Lee Y. Flow accelerated corrosion of stainless steel 316L by a rotating disk in lead-bismuth eutectic melt. JOM. 2021;73:4030–4040. doi: 10.1007/s11837-021-04953-y
  • Lei M, Dong W, Fang X, et al. Preparation of aluminum and (aluminum, silicon) coatings and study of the coatings anti-corrosion properties in 550 ℃ liquid lead-bismuth eutectic. Nucl Sci Eng. 2018;38:499–505.
  • Lu YH, Wang ZB, Song YY, et al. Effects of pre-formed nanostructured surface layer on oxidation behaviour of 9Cr2WVTa steel in air and liquid Pb-Bi eutectic alloy. Corros Sci. 2016;102:301–309. doi: 10.1016/j.corsci.2015.10.021
  • Kasada R, Dou P. Sol–gel composite coatings as anti-corrosion barrier for structural materials of lead–bismuth eutectic cooled fast reactor. J Nucl Mater. 2013;440(1–3):647–653. doi: 10.1016/j.jnucmat.2013.06.014
  • Li H, Bai P, Lin Z, et al. Corrosion resistance in Pb-Bi alloy of 15-15Ti steel coated with Al2O3/SiC bilayer thin films by magnetron sputtering. Fusion Eng Des. 2017;125:384–390. doi: 10.1016/j.fusengdes.2017.04.089
  • Ferré FG, Mairov A, Iadicicco D, et al. Corrosion and radiation resistant nanoceramic coatings for lead fast reactors. Corros Sci. 2017;124:80–92. doi: 10.1016/j.corsci.2017.05.011
  • Jiang Y, Qiu C, Liu Z. High-temperature oxidation resistance and corrosion resistance of CrFeAlTi composite coatings. China Surf Eng. 2015;28:84–89.
  • Zhu H, Xie L. Impeller fatigue analysis based on UG. J Henan Sci Technol. 2015;562:69–71.
  • Liu B, He G, Jiang X, et al. Review on effect factor and research method of material fatigue life. Mater Reports. 2011;25:103–106.
  • Zhang M, Liu Y, Wang W, et al. The fatigue of impellers and blades. Eng Fail Anal. 2015;62:208–231. doi: 10.1016/j.engfailanal.2016.02.001
  • Weng Z. Cause analysis of blade fracture in unit 4 steamturbine of Xiamen power plant. Guangdong Electr Power. 2005;18:69–71.
  • Egusquiza E, Valero C, Huang X, et al. Failure investigation of a large pump-turbine runner. Eng Fail Anal. 2012;23:27–34. doi: 10.1016/j.engfailanal.2012.01.012
  • Zhu C. Research on the assessment of the impeller fatigue analysis. Nucl Sci Eng. 2020;40:950–955.
  • Yeh JJ, Huang JY, Kuo RC. Temperature effects on low-cycle fatigue behavior of SA533B steel in simulated reactor coolant environments. Mater Chem Phys. 2007;104(1):125–132. doi: 10.1016/j.matchemphys.2007.02.097
  • Coffin LFJ. A study of the effects of cyclic thermal stresses on a ductile metal. Trans Am Soc Mech Eng New York. 1954;76(6):931–949. https://ci.nii.ac.jp/naid/10012801028/en/
  • Manson SS, Halford G. A method of estimating high temperature low cycle fatigue behavior of materials. 1967.
  • Zhu J, Yang Z. Analysis and life cycle prediction of marine gas turbine blades based on thermal-fluid-structure interaction. Chinese J Sh Res. 2010;5:64–68.
  • Liu Y, Lv Y, Huang J. Statistical correlation of material coefficient in fatigue cracks propagation formula and prognosticating propagation life of fatigue. J Wuhan Univ Technol. 2004;28:870–872.
  • Paolino DS, Cavatorta MP. On the application of the stochastic approach in predicting fatigue reliability using Miner’s damage rule. Fatigue Fract Eng Mater Struct. 2014;37(1):107–117. doi: 10.1111/ffe.12093
  • Wang YZ, Yang K, Qi RH, et al. Ultra-high cycle fatigue life prediction method for aero engine impeller. Zhejiang Daxue Xuebao (Gongxue Ban)/J Zhejiang Univ (Eng Sci). 2019;53(4):621–627.
  • Fuentes Solis NO, Gavrilov S, Stergar E, et al. Statistical analysis of the effect of lead-bismuth eutectic on fatigue resistance of 316L. Nucl Eng Des. 2023;407:407. doi: 10.1016/j.nucengdes.2023.112312
  • Yang S, Yang L, Wang Y. Determining the fatigue parameters in total strain life equation of a material based on monotonic tensile mechanical properties. Eng Fract Mech. 2020;226:226. doi: 10.1016/j.engfracmech.2019.106866
  • Peng Y, Liu Y, Li H, et al. Research on low cycle fatigue life prediction considering average strain. Mater Res Express. 2022;9(1):016521. doi: 10.1088/2053-1591/ac4b4d
  • Gao J, Wang J, Xu Z, et al. Multiaxial fatigue prediction and uncertainty quantification based on back propagation neural network and Gaussian process regression. Int J Fatigue. 2023;168:168. doi: 10.1016/j.ijfatigue.2022.107361
  • Zhang J, Li H, Li HY. Evaluation of multiaxial fatigue life prediction approach for adhesively bonded hollow cylinder butt-joints. Int J Fatigue. 2022;156:156. doi: 10.1016/j.ijfatigue.2021.106692

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.