37
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dynamic performance analysis of a new low-temperature nuclear heating system with APROS

, , , , &
Received 05 Mar 2024, Accepted 13 Jun 2024, Published online: 07 Jul 2024

References

  • Du B, Liu P, Li Z. Coal power plants transition based on joint planning of power and central heating sectors: a case study of China. Energy. 2023;283:129108. doi: 10.1016/j.energy.2023.129108
  • Zhang Y, Zheng W, Fang H, et al. Clean heating in Northern China: regional investigations and roadmap studies for urban area towards 2050. J Cleaner Prod. 2022;334:130233. doi: 10.1016/j.jclepro.2021.130233
  • Jia H, Wu S, Li H, et al. Thermalhydraulic investigation using a test facility simulating 200 MW integral heating reactor. J Nucl Sci Technol. 2000;37(2):202–208. doi: 10.1080/18811248.2000.9714884
  • Zhang X, She D, Chen F, et al. Temperature analysis of the HTR-10 after full load rejection. Nucl Sci Tech. 2019;30(11):163. doi: 10.1007/s41365-019-0692-1
  • Lu M, Xie H. A numerical investigation of SBLOCA scenario in nuclear heating reactor. J Nucl Sci Technol. 2019;56(8):731–743. doi: 10.1080/00223131.2019.1621782
  • Lipka M, Rajewski A. Regress in nuclear district heating. The need for rethinking cogeneration. Prog Nucl Energy. 2020;130:103518. doi: 10.1016/j.pnucene.2020.103518
  • Jaskólski M, Reński A, Minkiewicz T. Thermodynamic and economic analysis of nuclear power unit operating in partial cogeneration mode to produce electricity and district heat. Energy. 2017;141:2470–2483. doi: 10.1016/j.energy.2017.04.144
  • Leurent M, Da Costa P, Rämä M, et al. Cost-benefit analysis of district heating systems using heat from nuclear plants in seven European countries. Energy. 2018;149:454–472. doi: 10.1016/j.energy.2018.01.149
  • Xu C, Li Y, Jin M, et al. Preliminary design and analysis on the cogeneration system for small modular lead-cooled fast reactor. Appl Therm Eng. 2020;174:115302. doi: 10.1016/j.applthermaleng.2020.115302
  • Wang M, Chen W, Tao Y. Analysis of AP1000 severe accident induced by SBO using MAAP5. Prog Nucl Energy. 2021;132:103615. doi: 10.1016/j.pnucene.2020.103615
  • Saleh Abushamah HA, Skoda R. Nuclear energy for district cooling systems – novel approach and its eco-environmental assessment method. Energy. 2022;250:123824. doi: 10.1016/j.energy.2022.123824
  • Chen J, Zheng W, Kong Y, et al. Case study on combined heat and water system for nuclear district heating in Jiaodong Peninsula. Energy. 2021;218:119546. doi: 10.1016/j.energy.2020.119546
  • Hirsch P, Duzinkiewicz K, Grochowski M, et al. Two-phase optimizing approach to design assessments of long distance heat transportation for CHP systems. Appl Energy. 2016;182:164–176. doi: 10.1016/j.apenergy.2016.08.107
  • Dong Z, Huang X, Feng J, et al. Dynamic model for control system design and simulation of a low temperature nuclear reactor. Nucl Eng Des. 2009;239(10):2141–2151. doi: 10.1016/j.nucengdes.2009.05.006
  • Wang D, Ma C, Dong D, et al. Chinese nuclear heating test reactor and demonstration plant. Nucl Eng Des. 1992;136(1–2):91–98. doi: 10.1016/0029-5493(92)90116-D
  • Zhou T, Su G, Jia D. A thermohydraulic code for low temperature nuclear heating reactor and its passive residual heat removal systems. J Nucl Sci Technol. 2004;41(12):1255–1270. doi: 10.1080/18811248.2004.9726355
  • Zhang Y, Cheng H, Liu X, et al. Swimming pool-type low-temperature heating reactor: recent progress in research and application. Energy Procedia. 2017;127:425–431. doi: 10.1016/j.egypro.2017.08.110
  • Hwang W, Choi D, Lee K. Advanced passive residual heat removal system for high power pool-type research reactor. Ann Nucl Energy. 2019;128:94–101. doi: 10.1016/j.anucene.2018.12.050
  • Al-Yahia OS, Lee H, Jo D. Transient analyses of the Jordanian 5 MW research reactor under LOEP accident. Ann Nucl Energy. 2016;87:575–583. doi: 10.1016/j.anucene.2015.10.021
  • Adamov EO, Cherkashov YM, Romenkov AA, et al. Inherently safe pool-type reactor as a generator of low-grade heat for district heating, air conditioning and salt water desalination. Nucl Eng Des. 1997;173(1):167–174. doi: 10.1016/S0029-5493(97)00104-0
  • Tian J. Economic feasibility of heat supply from simple and safe nuclear plants. Ann Nucl Energy. 2001;28(11):1145–1150. doi: 10.1016/S0306-4549(00)00110-9
  • Tian J. Simple and safe deep pool reactor for low-temperature heat supply. Prog Nucl Energy. 2000;37(1):271–276. doi: 10.1016/S0149-1970(00)00058-5
  • Tian J, Shi G, Zhao Z, et al. Simple, safe and low-cost nuclear plants as a heat source for seawater desalination. Desalination. 1999;123(1):15–23. doi: 10.1016/S0011-9164(99)00055-7
  • Tian J, Shi G, Zhao Z, et al. Economic analyses of a nuclear desalination system using deep pool reactors. Desalination. 1999;123(1):25–31. doi: 10.1016/S0011-9164(99)00056-9
  • Tian J, Yang F, Zhao Z. Deep pool reactors for nuclear district heating. Prog Nucl Energy. 1998;33(3):279–288. doi: 10.1016/S0149-1970(96)00019-4
  • Hou M, Xu J, Zeng X, et al. Experimental study on the passive residual heat removal system of swimming pool-type low-temperature heating reactor. Nucl Eng Des. 2022;386:111583. doi: 10.1016/j.nucengdes.2021.111583
  • Xu J, Xie X, Ding M, et al. A one-dimensional code of double-coupled passive residual heat removal system for the swimming pool-type low-temperature heating reactor. Nucl Eng Des. 2021;374:111070. doi: 10.1016/j.nucengdes.2021.111070
  • Wang G, Wang B, Wen J, et al. Scaling analysis for inertia tank based on the cold state of deep pool-type nuclear heating reactor. Ann Nucl Energy. 2021;151:107907. doi: 10.1016/j.anucene.2020.107907
  • Xu J, Li X, Wang Z, et al. Dynamic scaling characteristics of single-phase natural circulation based on different strain transformations. Nucl Sci Tech. 2023;34(9):142. doi: 10.1007/s41365-023-01296-y
  • Tseng CM, Lepp RM. Dynamic simulation of the SLOWPOKE-3 nuclear heating reactor. SIMULATION. 1985;44(4):181–188. doi: 10.1177/003754978504400403
  • Babala D, Bredolt U, Kemppainen J. A study of the dynamics of SECURE reactors: comparison of experiments and computations. Nucl Eng Des. 1990;122(1):387–399. doi: 10.1016/0029-5493(90)90222-J
  • Wang D, Zhang D, Duo D, et al. Experimental study and operation experiences of the 5 MW nuclear heating reactor. Nucl Eng Des. 1993;143(1):9–18. doi: 10.1016/0029-5493(93)90272-B
  • Glebov VV. AST-500 operability during an unanticipated reactivity accident. At Energy. 2002;93(2):651–655. doi: 10.1023/A:1021044731312
  • Dong Z, Pan Y. A lumped-parameter dynamical model of a nuclear heating reactor cogeneration plant. Energy. 2018;145:638–656. doi: 10.1016/j.energy.2017.12.153
  • El Yaakoubi H, Boukhal H, Erradi L, et al. Neutronic modeling and calculation of the Nuclear Heating Reactor NHR-5 by the deterministic codes DRAGON5 & DONJON5. Prog Nucl Energy. 2021;142:104000. doi: 10.1016/j.pnucene.2021.104000
  • Hebert A, Sekki D, Chambon R. A USER GUIDE for DONJON VERSION5. Montreal (QC): École Polytechnique de Montréal; 2024.
  • Marleau G, Hebert A, Roy R. A USER GUIDE for DRAGON VERSION5. Montreal (QC): École Polytechnique de Montréal; 2024.
  • Wu Y, Liu T, Sun W. Analysis of SBO accident and natural circulation of 49-2 swimming pool reactor. At Energy Sci Technol. 2012;46(S1):290–294. [In Chinese].
  • Yue Z, Liu X, Guo C, et al. Analysis of SBO-ATWS accident and natural circulation capacity of DHR-200 pool type low temperature heating reactor. At Energy Sci Technol. 2020;54(10):1834–1839. [In Chinese].
  • Wang G, Wang B, Wen J, et al. Investigation on the hydraulic process of inertia tank in the case of pump trips. Nucl Eng Des. 2021;379:111195. doi: 10.1016/j.nucengdes.2021.111195
  • Wang G, Yue Z, Sun R, et al. Preliminary study on thermal–hydraulic behavior of loss-of-flow accident in deep pool-type nuclear reactor. Ann Nucl Energy. 2022;170:108992. doi: 10.1016/j.anucene.2022.108992
  • Szógrádi M, Norrman S, Bubelis E. Dynamic modelling of the helium-cooled DEMO fusion power plant with an auxiliary boiler in Apros. Fusion Eng Des. 2020;160:111970. doi: 10.1016/j.fusengdes.2020.111970
  • Stefanitsis D, Nesiadis A, Nikolopoulos A, et al. Simulation of a circulating fluidized bed power plant integrated with a thermal energy storage system during transient operation. J Energy Storage. 2021;43:103239. doi: 10.1016/j.est.2021.103239
  • Varju T, Aranyosy Á, Orosz R, et al. Analysis of the IAEA SPE-4 small-break LOCA experiment with RELAP5, TRACE and APROS system codes. Nucl Eng Des. 2021;377:111109. doi: 10.1016/j.nucengdes.2021.111109
  • Alobaid F, Wieck J, Epple B. Dynamic process simulation of a 780 MW combined cycle power plant during shutdown procedure. Appl Therm Eng. 2024;236:121852. doi: 10.1016/j.applthermaleng.2023.121852
  • Zhang L, Duan T, Jia Y. 400 MW low temperature heating reactor power regulation system simulation research. At Energy Sci Technol. 2018;52(12):2181–2187. [In Chinese].
  • American National Standards Institute. ANSI/ISA-77.20.01-2012. USA; 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.