Publication Cover
Journal of Quality Technology
A Quarterly Journal of Methods, Applications and Related Topics
Volume 53, 2021 - Issue 4
614
Views
8
CrossRef citations to date
0
Altmetric
Articles

Degradation under dynamic operating conditions: Modeling, competing processes and applications

, &

References

  • Abbring, J. H., and G. J. Van Den Berg. 2007. The unobserved heterogeneity distribution in duration analysis. Biometrika 94 (1):87–99. doi: 10.1093/biomet/asm013.
  • Bhattacharyya, G., and A. Fries. 1982. Fatigue failure models—Birnbaum-Saunders vs. inverse Gaussian. IEEE Transactions on Reliability R-31 (5):439–41. doi: 10.1109/TR.1982.5221421.
  • Bian, L., and N. Gebraeel. 2012. Computing and updating the first-passage time distribution for randomly evolving degradation signals. IIE Transactions 44 (11):974–87. doi: 10.1080/0740817X.2011.649661.
  • Bian, L., and N. Gebraeel. 2013. Stochastic methodology for prognostics under continuously varying environmental profiles. Statistical Analysis and Data Mining 6 (3):260–70.
  • Bian, L., N. Gebraeel, and J. Kharoufeh. 2015. Degradation modeling for real-time estimation of residual lifetimes in dynamic environments. IIE Transactions 47 (5):471–86. doi: 10.1080/0740817X.2014.955153.
  • Birnbaum, Z. W., and S. C. Saunders. 1969. A new family of life distributions. Journal of Applied Probability 6 (2):319–27. doi: 10.2307/3212003.
  • Chehade, A., C. Song, K. Liu, A. Saxena, and X. Zhang. 2018. A data-level fusion approach for degradation modeling and prognostic analysis under multiple failure modes. Journal of Quality Technology 50 (2):150–65. doi: 10.1080/00224065.2018.1436829.
  • Chen, P., and Z.-S. Ye. 2018. Uncertainty quantification for monotone stochastic degradation models. Journal of Quality Technology 50 (2):207–19. doi: 10.1080/00224065.2018.1436839.
  • Cox, D., and H. Miller. 1965. The theory of stochastic processes. Boca Raton: CRC Press.
  • Crowder, M. J. 2001. Classical competing risks. Boca Raton: Chapman and Hall/CRC.
  • Doksum, K. A., A. Hóyland, and A. Hoyland. 1992. Models for variable-stress accelerated life testing experiments based on Wiener processes and the inverse Gaussian distribution. Technometrics 34 (1):74–82. doi: 10.2307/1269554.
  • Efron, B., and R. J. Tibshirani. 1994. An introduction to the bootstrap. Boca Raton: Chapman and Hall/CRC.
  • Elsayed, E. A. 2012. Reliability engineering, vol. 88. Hoboken: John Wiley & Sons.
  • Elwany, A., and N. Gebraeel. 2009. Real-time estimation of mean remaining life using sensor-based degradation models. Journal of Manufacturing Science and Engineering 131 (5):051005–9. doi: 10.1115/1.3159045.
  • Fang, G., R. Pan, and Y. Hong. 2020. Copula-based reliability analysis of degrading systems with dependent failures. Reliability Engineering and System Safety 193:106618.
  • Fang, X., K. Paynabar, and N. Gebraeel. 2019. Image-based prognostics using penalized tensor regression. Technometrics 61 (3):369–384. doi: 10.1080/00401706.2018.1527727.
  • Gebraeel, N., and J. Pan. 2008. Prognostic degradation models for computing and updating residual life distributions in a time-varying environment. IEEE Transactions on Reliability 57:539–550. doi: 10.1109/TR.2008.928245.
  • Glaudell, R., R. T. Garcia, and J. B. Garcia. 1965. Nelder-mead simplex method. The Computer Journal 7 (4):308–313. doi: 10.1093/comjnl/7.4.308.
  • Hong, L., M. H. Y. Tan, and Z.-S. Ye. 2019. Nonparametric link functions with shape constraints in stochastic degradation processes: Application to emerging contaminants. Journal of Quality Technology, 1–15. doi: 10.1080/00224065.2019.1611353.
  • Hong, Y., Y. Duan, W. Q. Meeker, D. L. Stanley, and X. Gu. 2015. Statistical methods for degradation data with dynamic covariates information and an application to outdoor weathering data. Technometrics 57 (2):180–193. doi: 10.1080/00401706.2014.915891.
  • Hong, Y., M. Zhang, and W. Q. Meeker. 2018. Big data and reliability applications: The complexity dimension. Journal of Quality Technology 50 (2):135–149. doi: 10.1080/00224065.2018.1438007.
  • Huang, T., B. Peng, D. W. Coit, and Z. Yu. 2019. Degradation modeling and lifetime prediction considering effective shocks in a dynamic environment. IEEE Transactions on Reliability 68 (3):819–830. doi: 10.1109/TR.2019.2917058.
  • Jiang, L., Q. Feng, and D. W. Coit. 2015. Modeling zoned shock effects on stochastic degradation in dependent failure processes. IIE Transactions 47 (5):460–470. doi: 10.1080/0740817X.2014.955152.
  • Jin, R., X. Deng, X. Chen, L. Zhu, and J. Zhang. 2019. Dynamic quality-process model in consideration of equipment degradation. Journal of Quality Technology 51 (3):217–13. doi: 10.1080/00224065.2018.1541379.
  • Kharoufeh, J. P. 2003. Explicit results for wear processes in a Markovian environment. Operations Research Letters 31 (3):237–244. doi: 10.1016/S0167-6377(02)00229-8.
  • Liao, H., and E. A. Elsayed. 2006. Reliability inference for field conditions from accelerated degradation testing. Naval Research Logistics 53 (6):576–587. doi: 10.1002/nav.20163.
  • Liao, H., and Z. Tian. 2013. A framework for predicting the remaining useful life of a single unit under time-varying operating conditions. IIE Transactions 45 (9):964–980. doi: 10.1080/0740817X.2012.705451.
  • Liu, B., X. Zhao, G. Liu, and Y. Liu. 2020. Life cycle cost analysis considering multiple dependent degradation processes and environmental influence. Reliability Engineering and System Safety 197:106784.
  • Liu, K., A. Chehade, and C. Song. 2017. Optimize the signal quality of the composite health index via data fusion for degradation modeling and prognostic analysis. IEEE Transactions on Automation Science and Engineering 14 (3):1504–1542. doi: 10.1109/TASE.2015.2446752.
  • Liu, X. 2012. Planning of accelerated life tests with dependent failure modes based on a gamma frailty model. Technometrics 54 (4):398–409. doi: 10.1080/00401706.2012.707579.
  • Liu, X., J. Li, K. N. Al-Khalifa, A. S. Hamouda, D. W. Coit, and E. A. Elsayed. 2013. Condition-based maintenance for continuously monitored degrading systems with multiple failure modes. IIE Transactions 45 (4):422–435. doi: 10.1080/0740817X.2012.690930.
  • Liu, X., and W. S. Qiu. 2011. Modeling and planning of step-stress accelerated life tests with independent competing risks. IEEE Transactions on Reliability 60 (4):712–720. doi: 10.1109/TR.2011.2160748.
  • Liu, X., C. T. Tan, and D. Pare. 2017. A case study on the modeling of system state degradation for data center cooling systems. In Proceedings of the 2017 Prognostics and System Health Management Conference, IEEE, Harbin, China.
  • Liu, X., K. M. Yeo, and J. Kalagnanam. 2018. A statistical modeling approach for spatio-temporal degradation data. Journal of Quality Technology 50 (2):166–182. doi: 10.1080/00224065.2018.1436833.
  • LTPP. 2019. Long-term pavement performance. Department of Transportation, Federal Highway Administration. https://highways.dot.gov/research/long-term-infrastructure-performance/ltpp/long-term-pavement-performance
  • Ma, Z. H., S. P. Wang, H. T. Liao, and C. Zhang. 2019. Engineering-driven performance degradation analysis of hydraulic piston pump based on the inverse Gaussian process. Quality and Reliability Engineering International 35:2278–2296. doi: 10.1002/qre.2502.
  • Meeker, W. Q., and L. A. Escobar. 2014. Statistical methods for reliability data. New York: John Wiley & Sons.
  • Meeker, W. Q., and Y. Hong. 2014. Reliability meets Big Data: Opportunities and challenges. Quality Engineering 26 (1):102–116. doi: 10.1080/08982112.2014.846119.
  • Meyer, M. C. 2008. Inference using shape-restricted regression splines. The Annals of Applied Statistics 2 (3):1013–1033. doi: 10.1214/08-AOAS167.
  • Nelson, W. B. 2009. Accelerated testing: Statistical models, test plans, and data analysis, vol. 344. Hoboken: John Wiley & Sons.
  • Peng, C.-Y., and S.-T. Tseng. 2010. Progressive-stress accelerated degradation test for highly-reliable products. IEEE Transactions on Reliability 59:30–7.
  • Peng, W., Y.-F. Li, J. Mi, L. Yu, and H.-Z. Huang. 2016. Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective. Reliability Engineering & System Safety 153:75–87. doi: 10.1016/j.ress.2016.04.005.
  • Rafiee, K., Q. Feng, and D. W. Coit. 2014. Reliability modeling for dependent competing failure processes with changing degradation rate. IIE Transactions 46 (5):483–496. doi: 10.1080/0740817X.2013.812270.
  • Ramsay, J. O. 1998. Estimating smooth monotone functions. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 60 (2):365–375. doi: 10.1111/1467-9868.00130.
  • Shen, J., and L. Cui. 2016. Reliability performance for dynamic systems with cycles of K regimes. IIE Transactions 48 (4):389–402. doi: 10.1080/0740817X.2015.1110266.
  • Singpurwalla, N. D. 1995. Survival in dynamic environments. Statistical Science 10 (1):86–103. doi: 10.1214/ss/1177010132.
  • Song, C., K. Liu, and X. Zhang. 2018. Integration of data-level fusion model and kernel methods for degradation modeling and prognostic analysis. IEEE Transactions on Reliability 67 (2):640–650. doi: 10.1109/TR.2017.2715180.
  • Thomas, E. V., I. Bloom, J. P. Christophersen, D. C. Robertson, L. K. Walker, C. D. Ho, and V. S. Battaglia. 2019. Modeling memoryless degradation under variable stress. Journal of Quality Technology 51 (3):284–16. doi: 10.1080/00224065.2019.1569963.
  • Tian, Z., and H. Liao. 2011. Condition based maintenance optimization for multi-component systems using proportional hazards model. Reliability Engineering & System Safety 96 (5):581–589. doi: 10.1016/j.ress.2010.12.023.
  • Tseng, S.-T., and C.-Y. Peng. 2004. Optimal burn-in policy by using an integrated Wiener process. IIE Transactions 36 (12):1161–1170. doi: 10.1080/07408170490507701.
  • Yan, H., K. Liu, X. Zhang, and J. Shi. 2016. Multiple sensor data fusion for degradation modeling and prognostics under multiple operational conditions. IEEE Transactions on Reliability 65 (3):1416–1426. doi: 10.1109/TR.2016.2575449.
  • Yang, L., Y. Zhao, R. Peng, and X. Ma. 2018. Hybrid preventive maintenance of competing failures under random environment. Reliability Engineering & System Safety 174:130–140. doi: 10.1016/j.ress.2018.02.017.
  • Ye, Z.-S., and N. Chen. 2014. The inverse Gaussian process as a degradation model. Technometrics 56 (3):302–311. doi: 10.1080/00401706.2013.830074.
  • Zhai, Q., and Z.-S. Ye. 2018. Degradation in common dynamic environments. Technometrics 60 (4):461–471. doi: 10.1080/00401706.2017.1375994.
  • Zhao, X. J., J. Xu, and B. Liu. 2018. Accelerated degradation tests planning with competing failure modes. IEEE Transactions on Reliability 67 (1):142–155. doi: 10.1109/TR.2017.2761025.
  • Zhou, R., N. Serban, and N. Gebraeel. 2014. Degradation-based residual life prediction under different environments. The Annals of Applied Statistics 8 (3):1671–1689. doi: 10.1214/14-AOAS749.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.