Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 121, 2023 - Issue 9-10: Special Issue of Molecular Physics in Honor of Professor Peter M. W. Gill
213
Views
1
CrossRef citations to date
0
Altmetric
Peter Gill Special Issue

Bismuth(III)-catalysed hydroalkylation of styrene with acetylacetone: a DFT-Based mechanistic study

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: e2093798 | Received 17 Apr 2022, Accepted 18 Jun 2022, Published online: 08 Jul 2022

References

  • C.J. Li. Organic Reactions in Aqueous Media - with a Focus on Carbon-Carbon Bond Formation, Chem. Rev. 93, 2023–2035 (1993). doi:10.1021/cr00022a004
  • G. Dyker. Transition Metal Catalyzed Coupling Reactions Under C−H Activation, Angew. Chem., Int. Ed. 38, 1698–1712 (1999).<1698::AID-ANIE1698>3.0.CO;2-6
  • B. Trost. The Atom Economy—A Search for Synthetic Efficiency, Science. 254, 1471–1477 (1991). doi:10.1126/science.1962206
  • T. Ren, M. Patel and K. Blok. Olefins from Conventional and Heavy Feedstocks: Energy use in Steam Cracking and Alternative Processes, Energy. 31, 425–451 (2006). doi:10.1016/j.energy.2005.04.001
  • M. Rueping, B.J. Nachtsheim and A. Kuenkel. An Efficient Metal-Catalyzed Hydroalkylation, Synlett. 2007, 1391–1394 (2007). doi:10.1055/s-2007-980363
  • H. Gaspard-Iloughmane and C. Le Roux. Bismuth(III) Triflate in Organic Synthesis, Eur. J. Org. Chem. 25172532 (2004).
  • B. Banerjee. Bismuth(III) Triflate: An Efficient Catalyst for the Synthesis of Diverse Biologically Relevant Heterocycles, ChemistrySelect. 2, 6744–6757 (2017). doi:10.1002/slct.201701441
  • J.M. Bothwell, S.W. Krabbe and R.S. Mohan. Applications of Bismuth(III) Compounds in Organic Synthesis, Chem. Soc. Rev. 40, 4649–4707 (2011). doi:10.1039/c0cs00206b
  • C. Le Roux and J. Dubac. Bismuth(III) Chloride and Triflate: Novel Catalysts for Acylation and Sulfonylation Reactions. Survey and Mechanistic Aspects, Synlett. 2002, 0181–0200 (2002). doi:10.1055/s-2002-19743
  • R. Babaahmadi, M. Jalali, J.A. Smith, B.F. Yates and A. Ariafard. How a Bismuth(III) Catalyst Achieves Greatest Activation of Organic Lewis Bases in a Catalytic Reaction: Insights from DFT Calculations, ChemCatChem. 13, 975–980 (2021). doi:10.1002/cctc.202001688
  • X. Yao and C.-J. Li. Highly Efficient Addition of Activated Methylene Compounds to Alkenes Catalyzed by Gold and Silver, J. Am. Chem. Soc. 126, 6884–6885 (2004). doi:10.1021/ja0482637
  • Z. Duan, X. Xuan and Y. Wu. FeCl3 Catalyzed Addition of Activated Methylenes to Styrene Derivatives Under Air, Tetrahedron Lett. 48, 5157–5159 (2007). doi:10.1016/j.tetlet.2007.05.035
  • Li, Y.; Yu, Z.; Wu, S., Efficient Copper(II)-Catalyzed Addition of Activated Methylene Compounds to Alkenes. J. Org Chem. 2008, 73, 5647−5650. doi:10.1021/jo800836g
  • Y. Yuan and Z. Shi. Indium(III)-Catalyzed Addition of 1,3-Dicarbonyl Compounds to Alkenes, Synlett., 3219–3223 (2007). doi:10.1055/s-2007-992388
  • H.S. Wang and W.X. Zhao. Magnesium Bistrifluoromethanesulfonimide as an Efficient Catalyst for the Hydroalkylation of Aromatic Olefins with 1,3-Diketones Under Solvent-Free Conditions, Chin. Chem. Lett. 22, 911–914 (2011). doi:10.1016/j.cclet.2011.01.036
  • K.-i.Y.,.T. Shimizu, Y. Tai, K. Okumura and A. Satsuma. Addition of Olefins to Acetylacetone Catalyzed by Cooperation of Brønsted Acid Site of Zeolite and Gold Cluster, Appl. Catal., A. 400, 171–175 (2011). doi:10.1016/j.apcata.2011.04.029
  • R.-V. Nguyen, X. Yao and C.-J. Li. Highly Efficient Gold-Catalyzed Atom-Economical Annulation of Phenols with Dienes, Org. Lett. 8, 2397–2399 (2006). doi:10.1021/ol0607692
  • G. Meng, M. Patel, F. Luo, Q. Li, C. Flach, R. Mendelsohn, E. Garfunkel, H. He and M. Szostak. Graphene Oxide Catalyzed Ketone α-Alkylation with Alkenes: Enhancement of Graphene Oxide Activity by Hydrogen Bonding, Chem. Commun. 55, 5379–5382 (2019). doi:10.1039/C9CC02578B
  • H.E. Lanman, R.-V. Nguyen, X. Yao, T.-H. Chan and C.-J. Li. Evaluating Lewis Acid Catalyzed Hydroalkylation of Alkenes in Neat and in Ionic Liquids, J. Mol. Catal. A: Chem. 279, 218–222 (2008). doi:10.1016/j.molcata.2007.03.059
  • M. Jalali, C.J.T. Hyland, A.C. Bissember, B.F. Yates and A. Ariafard. Hydroalkylation of Alkenes with 1,3-Diketones via Gold(III) or Silver(I) Catalysis: Divergent Mechanistic Pathways Revealed by a DFT-Based Investigation, ACS Catal. 11, 5795–5807 (2021). doi:10.1021/acscatal.0c05260
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D.J. Fox, Gaussian 16, Revision B.01 (Gaussian, Inc., Wallingford CT, 2016).
  • C. Lee, W. Yang and R.G. Parr. Development of the Colle-Salvetti Correlation-Energy Formula Into a Functional of the Electron Density, Physical Review B. 37, 785–789 (1988). doi:10.1103/PhysRevB.37.785
  • B. Miehlich, A. Savin, H. Stoll and H. Preuss. Results Obtained with the Correlation Energy Density Functionals of Becke and Lee, Yang and Parr, Chem. Phys. Lett. 157, 200–206 (1989). doi:10.1016/0009-2614(89)87234-3
  • A.D.J. Becke. Density Functional Thermochemistry. III. The Role of Exact Exchange, Chem. Phys. Lett. 98, 5648–5652 (1993).
  • A.V. Marenich, C.J. Cramer and D.G. Truhlar. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, J. Phys. Chem. B. 113, 6378–6396 (2009). doi:10.1021/jp810292n
  • Wadt, W. R.; Hay, P. J., Ab InitioEffective Core Potentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi. J. Chem. Phys. 1985, 82, 284−298. doi:10.1063/1.448800
  • P.J. Hay and W.R. Wadt.Ab InitioEffective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg, J. Chem. Phys. 82, 270–283 (1985). doi:10.1063/1.448799
  • A.W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K.F. Köhler, R. Stegmann, A. Veldkamp and G. Frenking. A set of f-Polarization Functions for Pseudo-Potential Basis Sets of the Transition Metals Sc─Cu, Y─Ag and La─Au, Chem. Phys. Lett. 208, 111–114 (1993). doi:10.1016/0009-2614(93)80086-5
  • P.C. Hariharan and J.A. Pople. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies, Theor. Chim. Acta. 28, 213–222 (1973). doi:10.1007/BF00533485
  • K. Fukui. The Path of Chemical Reactions - The IRC Approach, Acc. Chem. Res. 14, 363–368 (1981). doi:10.1021/ar00072a001
  • K. Fukui. Formulation of the Reaction Coordinate, J. Phys. Chem. 74, 4161–4163 (1970). doi:10.1021/j100717a029
  • Y. Zhao and D.G. Truhlar. Density Functionals with Broad Applicability in Chemistry, Acc. Chem. Res. 41, 157–167 (2008). doi:10.1021/ar700111a
  • F. Weigend, F. Furche and R. Ahlrichs. Gaussian Basis Sets of Quadruple Zeta Valence Quality for Atoms H-Kr, Chem. Phys. Lett. 119, 12753–12762 (2003).
  • E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohmann, C.M. Morales, C.R. Landis and F. Weinhold, Natural Bond Order 7.0 (Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2013).
  • Y. Shao, Z. Gan, E. Epifanovsky, A.T.B. Gilbert, M. Wormit, J. Kussmann, A.W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P.R. Horn, L.D. Jacobson, I. Kaliman, R.Z. Khaliullin, T. Kus, A. Landau, J. Liu, E.I. Proynov, Y.M. Rhee, R.M. Richard, M.A. Rohrdanz, R.P. Steele, E.J. Sundstrom, H.L. Woodcock, P.M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire, B. Austin, G.J.O. Beran, Y.A. Bernard, E. Berquist, K. Brandhorst, K.B. Bravaya, S.T. Brown, D. Casanova, C.-M. Chang, Y. Chen, S.H. Chien, K.D. Closser, D.L. Crittenden, M. Diedenhofen, R.A. DiStasio, H. Do, A.D. Dutoi, R.G. Edgar, S. Fatehi, L. FustiMolnar, A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes, M.W.D. Hanson-Heine, P.H.P. Harbach, A.W. Hauser, E.G. Hohenstein, Z.C. Holden, T.-C. Jagau, H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim, R.A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C.M. Krauter, K.U. Lao, A.D. Laurent, K.V. Lawler, S.V. Levchenko, C.Y. Lin, F. Liu, E. Livshits, R.C. Lochan, A. Luenser, P. Manohar, S.F. Manzer, S.-P. Mao, N. Mardirossian, A.V. Marenich, S.A. Maurer, N.J. Mayhall, E. Neuscamman, C.M. Oana, R. Olivares-Amaya, D.P. O’Neill, J.A. Parkhill, T.M. Perrine, R. Peverati, A. Prociuk, D.R. Rehn, E. Rosta, N.J. Russ, S.M. Sharada, S. Sharma, D.W. Small, A. Sodt, et al. Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package, Mol. Phys. 113, 184–215 (2015). doi:10.1080/00268976.2014.952696
  • MW,J Dudev, T. Dudev and C. Lim. Factors Governing the Metal Coordination Number in Metal Complexes from Cambridge Structural Database Analyses, J. Phys. Chem. B. 110, 1889–1895 (2006). doi:10.1021/jp054975n
  • An internal hydrogen bond is identified in complex 33 with a distance of 1.604 Å between the OH enol ligand and an OTf ligand. However, this interaction is not strong enough to prevent the proton transfer to styrene via TS33-26 with ΔG‡ 22.3 kcal/mol (Figure 6c). We can also rule out the reaction proceeding from 33 via an internal proton transfer to an OTf ligand followed by the release of HOTf for two reasons. Firstly, it has been shown experimentally that HOTf does not catalyse the reaction (ref. 5). Secondly, a recent computational study of a related bismuth reaction shows that this possibility is a highly endergonic process (ref. 10).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.